Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro.
نویسندگان
چکیده
We have analyzed the DNA sequence requirements for TATA element function by assaying the transcriptional activities of 25 promoters, including those representing each of the 18 single-point mutants of the consensus sequence TATAAA, in a reconstituted in vitro system that depends on the TATA element-binding factor TFIID. Interestingly, yeast TFIID and HeLa cell TFIID were virtually identical in terms of their relative activities on this set of promoters. Of the mutated elements, only two had undetectable activity; the rest had activities ranging from 2 to 75% of the activity of the consensus element, which was the most active. In addition, mutations of the nucleotide following the TATAAA core strongly influenced transcriptional activity, although with somewhat different effects on yeast and HeLa TFIID. The activities of all these promoters depended upon TFIID, and the level of TFIID-dependent transcription in vitro correlated strongly with their activities in yeast cells. This suggests that the in vivo activities of these elements reflect their ability to functionally interact with a single TATA-binding factor. However, some elements with similar activities in vitro supported very different levels of transcriptional activation by GAL4 protein in vivo. These results extend the degree of evolutionary conservation between yeast and mammalian TFIID and are useful for predicting the level of TATA element function from the primary sequence.
منابع مشابه
A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element.
In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally d...
متن کاملEquivalent mutations in the two repeats of yeast TATA-binding protein confer distinct TATA recognition specificities.
To investigate the process of TATA box recognition by the TATA box-binding protein (TBP), we have performed a detailed genetic and biochemical analysis of two Saccharomyces cerevisiae TBP mutants with altered DNA-binding specificity. The mutant proteins have amino acid substitutions (Leu-205 to Phe and Leu-114 to Phe) at equivalent positions within the two repeats of TBP that are involved in TA...
متن کاملDNA sequence requirements for transcriptional initiator activity in mammalian cells.
A transcriptional initiator (Inr) for mammalian RNA polymerase II can be defined as a DNA sequence element that overlaps a transcription start site and is sufficient for (i) determining the start site location in a promoter that lacks a TATA box and (ii) enhancing the strength of a promoter that contains a TATA box. We have prepared synthetic promoters containing random nucleotides downstream o...
متن کاملTATA binding protein can stimulate core-directed transcription by yeast RNA polymerase I.
The TATA binding protein (TBP) interacts with two transcription factor complexes, upstream activating factor (UAF) and core factor (CF), to direct transcription by RNA polymerase I (polI) in the yeast Saccharomyces cerevisiae. Previous work indicates that one function of TBP is to serve as a bridge, enabling UAF to recruit and stabilize the binding of CF (23, 24). In this work we show that, in ...
متن کاملTBP mutants defective in activated transcription in vivo.
The TATA box binding protein (TBP) plays a central and essential role in transcription initiation. At TATA box-containing genes transcribed by RNA polymerase II, TBP binds to the promoter and initiates the assembly of a multiprotein preinitiation complex. Several studies have suggested that binding of TBP to the TATA box is an important regulatory step in transcription initiation in vitro. To d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 10 8 شماره
صفحات -
تاریخ انتشار 1990