A Novel Aggregation Method based on Graph Matching for Algebraic MultiGrid Preconditioning of Sparse Linear Systems

نویسندگان

  • A. Buttari
  • D. di Serafino
  • S. Filippone
  • S. Gentile
چکیده

Multilevel techniques are very effective tools for preconditioning iterative Krylov methods in the solution of sparse linear systems; among them, Algebraic MultiGrid (AMG) are widely employed variants. In [2, 4] it is shown how parallel smoothed aggregation techniques can be used in combination with domain decomposition Schwarz preconditioners to obtain AMG preconditioners; the effectiveness of such a combination results from the fact that the use of coarse grids induces a higher coupling between the subdomains defined in the Schwarz framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A GPU Accelerated Aggregation Algebraic Multigrid Method

We present an efficient, robust and fully GPU-accelerated aggregation-based algebraic multigrid preconditioning technique for the solution of large sparse linear systems. These linear systems arise from the discretization of elliptic PDEs. The method involves two stages, setup and solve. In the setup stage, hierarchical coarse grids are constructed through aggregation of the fine grid nodes. Th...

متن کامل

Combinatorial problems in solving linear systems

Numerical linear algebra and combinatorial optimization are vast subjects; as is their interaction. In virtually all cases there should be a notion of sparsity for a combinatorial problem to arise. Sparse matrices therefore form the basis of the interaction of these two seemingly disparate subjects. As the core of many of today’s numerical linear algebra computations consists of the solution of...

متن کامل

An aggregation-based algebraic multigrid method

An algebraic multigrid method is presented to solve large systems of linear equations. The coarsening is obtained by aggregation of the unknowns. The aggregation scheme uses two passes of a pairwise matching algorithm applied to the matrix graph, resulting in most cases in a decrease of the number of variables by a factor slightly less than four. The matching algorithm favors the strongest nega...

متن کامل

A new perspective on strength measures in algebraic multigrid

Algebraic-based multilevel solution methods (e.g. classical Ruge–Stüben and smoothed aggregation style algebraic multigrid) attempt to solve or precondition sparse linear systems without knowledge of an underlying geometric grid. The automatic construction of a multigrid hierarchy relies on strength-of connection information to coarsen the matrix graph and to determine sparsity patterns for the...

متن کامل

Approximate cyclic reduction preconditioning

We discuss an iterative method for solving large sparse systems of equations. A hybrid method is introduced which uses ideas both from ILU preconditioning and from multigrid. The resulting preconditioning technique requires the matrix only. A multilevel structure is obtained by using maximal independent sets for graph coarsening. Ideas from [20], [22] are used to construct a sparse Schur comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011