Error Bounds for Piecewise Smooth and Switching Regression
نویسنده
چکیده
The paper deals with regression problems, in which the nonsmooth target is assumed to switch between different operating modes. Specifically, piecewise smooth (PWS) regression considers target functions switching deterministically via a partition of the input space, while switching regression considers arbitrary switching laws. The paper derives generalization error bounds in these two settings by following the approach based on Rademacher complexities. For PWS regression, our derivation involves a chaining argument and a decomposition of the covering numbers of PWS classes in terms of the ones of their component functions and the capacity of the classifier partitioning the input space. This yields error bounds with a radical dependency on the number of modes. For switching regression, the decomposition can be performed directly at the level of the Rademacher complexities, which yields bounds with a linear dependency on the number of modes. By using once more chaining and a decomposition at the level of covering numbers, we show how to recover a radical dependency, however at the cost of a slightly worse convergence rate. Examples of applications are given in particular for PWS and swichting regression with linear and kernel-based component functions.
منابع مشابه
Presentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates
The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...
متن کاملNonparametric estimation of piecewise smooth regression functions
Estimation of univariate regression functions from bounded i.i.d. data is considered. Estimates are deened by minimizing a complexity penalized residual sum of squares over all piecewise polynomials. The integrated squared error of these estimates achieves for piecewise p-smooth regression functions the rate (ln 2 (n)=n) 2p 2p+1 .
متن کاملAn integrated heuristic method based on piecewise regression and cluster analysis for fluctuation data (A case study on health-care: Psoriasis patients)
Trend forecasting and proper understanding of the future changes is necessary for planning in health-care area.One of the problems of analytic methods is determination of the number and location of the breakpoints, especially for fluctuation data. In this area, few researches are published when number and location of the nodes are not specified.In this paper, a clustering-based method is develo...
متن کاملTWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملAlmost Linear VC Dimension Bounds for Piecewise Polynomial Networks
We compute upper and lower bounds on the VC dimension and pseudo-dimension of feedforward neural networks composed of piecewise polynomial activation functions. We show that if the number of layers is fixed, then the VC dimension and pseudo-dimension grow as WlogW, where W is the number of parameters in the network. This result stands in opposition to the case where the number of layers is unbo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1707.07938 شماره
صفحات -
تاریخ انتشار 2017