Homological Perturbation Theory for Algebras over Operads
نویسنده
چکیده
We extend homological perturbation theory to encompass algebraic structures governed by operads and cooperads. Specifically, for an operad O, we define the notion of an ‘O-algebra contraction’ and we prove that the formulas of the Basic Perturbation Lemma preserve O-algebra contractions. Over a ground ring containing the rational numbers, we give explicit formulas for constructing an O-algebra contraction from any given contraction, generalizing the so called ‘Tensor Trick’. As an illustration of our results we use them to give short proofs of the transfer and minimality theorems for O∞-algebras, where O is any Koszul operad. This subsumes, but is not restricted to, the cases of A∞, C∞ and L∞-algebras.
منابع مشابه
Operads, Algebras, Modules, and Motives
With motivation from algebraic topology, algebraic geometry, and stringtheory, we study various topics in differential homological algebra. The work is dividedinto five largely independent Parts:I Definitions and examples of operads and their actionsII Partial algebraic structures and conversion theoremsIII Derived categories from a topological point of viewIV Rational d...
متن کاملOperads and Props
We review definitions and basic properties of operads, PROPs and algebras over these structures. Dedicated to the memory of Jakub Jan Ryba (1765–1815) Operads involve an abstraction of the family {Map(X, X)}n≥0 of composable functions of several variables together with an action of permutations of variables. As such, they were originally studied as a tool in homotopy theory, specifically for it...
متن کاملAcademy of Sciences of the Czech Republic Mathematical Institute Operads and Props
We review definitions and basic properties of operads, PROPs and algebras over these structures. Dedicated to the memory of Jakub Jan Ryba (1765–1815) Operads involve an abstraction of the family {Map(X, X)}n≥0 of composable functions of several variables together with an action of permutations of variables. As such, they were originally studied as a tool in homotopy theory, specifically for it...
متن کاملRectifying Partial Algebras over Operads of Complexes
In [2] Kriz and May introduced partial algebras over an operad. In this paper we prove that, in the category of chain complexes, partial algebras can be functorially replaced by quasi-isomorphic algebras. In particular, partial algebras contain all of the important homological and homotopical information that genuine algebras do. Applying this result to McClure’s partial algebra in [6] shows th...
متن کاملHomological Perturbation Theory and Mirror Symmetry
We explain how deformation theories of geometric objects such as complex structures, Poisson structures and holomorphic bundle structures lead to differential Gerstenhaber or Poisson algebras. We use homological perturbation theory to obtain A∞ algebra structures and some canonically defined deformations of such structures on the cohomology. We formulate the A∞ algebraic mirror symmetry as the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009