Asymptotic Feynman-kac Formulae for Large Symmetrised Systems of Random Walks

نویسنده

  • Tony Dorlas
چکیده

We study large deviations principles for N random processes on the lattice Z d with finite time horizon [0, β] under a symmetrised measure where all initial and terminal points are uniformly given by a random permutation. That is, given a permutation σ of N elements and a vector (x1, . . . , xN ) of N initial points we let the random processes terminate in the points (xσ(1), . . . , xσ(N)) and then sum over all possible permutations and initial points, weighted with an initial distribution. There is a two-level random mechanism and we prove two-level large deviations principles for the mean of empirical path measures, for the mean of paths and for the mean of occupation local times under this symmetrised measure. The symmetrised measure cannot be written as any product of single random process distributions. We show a couple of important applications of these results in quantum statistical mechanics using the Feynman-Kac formulae representing traces of certain trace class operators. In particular we prove a non-commutative Varadhan Lemma for quantum spin systems with Bose-Einstein statistics and mean field interactions. A special case of our large deviations principle for the mean of occupation local times of N simple random walks has the Donsker-Varadhan rate function as the rate function for the limit N → ∞ but for finite time β. We give an interpretation in quantum statistical mechanics for this surprising result. MSC 2000. 60F10; 60J65; 82B10; 82B26.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Path probabilities of continuous time random walks

Employing the path integral formulation of a broad class of anomalous diffusion processes, we derive the exact relations for the path probability densities of these processes. In particular, we obtain a closed analytical solution for the path probability distribution of a Continuous Time Random Walk (CTRW) process. This solution is given in terms of its waiting time distribution and short time ...

متن کامل

Asymptotic Results for Genetic Algorithms with Applications to Non Linear Estimation

Genetic algorithms are stochastic search methods based on natural evolution processes. They are defined as a system of particles (or individuals) evolving randomly and undergoing adaptation in a time non necessarily homogeneous environment represented by a collection of fitness functions. The purpose of this work is to study the long time behavior as well as large population asymptotic of genet...

متن کامل

Counting statistics: a Feynman-Kac perspective.

By building upon a Feynman-Kac formalism, we assess the distribution of the number of collisions in a given region for a broad class of discrete-time random walks in absorbing and nonabsorbing media. We derive the evolution equation for the generating function of the number of collisions, and we complete our analysis by examining the moments of the distribution and their relation to the walker ...

متن کامل

Large and moderate deviations for intersection local times

We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2-norm of Brownian local times, and coincides with the large deviation obtained by Csörgö, Shi and...

متن کامل

Random Walks on Finite Quantum Groups

1 Markov chains and random walks in classical probability . . 3 2 Quantum Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Random walks on comodule algebras . . . . . . . . . . . . . . . . . . . . . . 7 4 Random walks on finite quantum groups . . . . . . . . . . . . . . . . . . 11 5 Spatial Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008