Efficient Prediction for Tree Markov Random Fields in a Streaming Model
نویسندگان
چکیده
We consider streaming prediction model for tree Markov Random fields. Given the random field, at any point in time we may perform one of three actions: i) predict a label at a vertex on the tree ii) update by associating a label with a vertex or iii) delete the label at a vertex. Using the standard methodology of belief propagation each such action requires time linear in the size of the tree. We give a method based on an optimal decomposition tree that even in the worst case is an exponential speed-up over belief propagation.
منابع مشابه
Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملSubset Selection for Gaussian Markov Random Fields
Given a Gaussian Markov random field, we consider the problem of selecting a subset of variables to observe which minimizes the total expected squared prediction error of the unobserved variables. We first show that finding an exact solution is NP-hard even for a restricted class of Gaussian Markov random fields, called Gaussian free fields, which arise in semi-supervised learning and computer ...
متن کاملFrom Fields to Trees
We present new MCMC algorithms for computing the posterior distributions and expectations of the unknown variables in undirected graphical models with regular structure. For demonstration purposes, we focus on Markov Random Fields (MRFs). By partitioning the MRFs into non-overlapping trees, it is possible to compute the posterior distribution of a particular tree exactly by conditioning on the ...
متن کاملEvaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملDistributed Generation Expansion Planning Considering Load Growth Uncertainty: A Novel Multi-Period Stochastic Model
Abstract – Distributed generation (DG) technology is known as an efficient solution for applying in distribution system planning (DSP) problems. Load growth uncertainty associated with distribution network is a significant source of uncertainty which highly affects optimal management of DGs. In order to handle this problem, a novel model is proposed in this paper based on DG solution, consideri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011