Well-posedness of a fractional porous medium equation on an evolving surface
نویسندگان
چکیده
We investigate the existence, uniqueness, and L-contractivity of weak solutions to a porous medium equation with fractional diffusion on an evolving hypersurface. To settle the existence, we reformulate the equation as a local problem on a semi-infinite cylinder, regularise the porous medium nonlinearity and truncate the cylinder. Then we pass to the limit first in the truncation parameter and then in the nonlinearity, and the identification of limits is done using the theory of subdifferentials of convex functionals. In order to facilitate all of this, we begin by studying (in the setting of closed Riemannian manifolds and Sobolev spaces) the fractional Laplace–Beltrami operator which can be seen as the Dirichlet-to-Neumann map of a harmonic extension problem. A truncated harmonic extension problem will also be examined and convergence results to the solution of the harmonic extension will be given. For a technical reason, we will also consider some related extension problems on evolving hypersurfaces which will provide us with the minimal time regularity required on the harmonic extensions in order to properly formulate the moving domain problem. This functional analytic theory is of course independent of the fractional porous medium equation and will be of use generally in the analysis of fractional elliptic and parabolic problems on manifolds. Dedicated to Juan Luis Vázquez on the occasion of his 70 birthday
منابع مشابه
An experimental study on hydraulic behavior of free-surface radial flow in coarse-grained porous media
The equations of fluids in porous media are very useful in designing the rockfill and diversion dams, gabions, breakwaters and ground water reserves. Researches have been showed that the Forchheimer equation is not sufficient for the analysis of hydraulic behavior of free-surface radial flows; because, in these flows, in addition to the hydraulic gradient and velocity, the variable of radius is...
متن کاملElectro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory
This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...
متن کاملRigidity and Irregularity Effect on Surface Wave Propagation in a Fluid Saturated Porous Layer
The propagation of surface waves in a fluid- saturated porous isotropic layer over a semi-infinite homogeneous elastic medium with an irregularity for free and rigid interfaces have been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for Love waves is derived by simple mathematical techniques followed by Fourier transformations. It can be seen t...
متن کاملExistence and Uniqueness Theory for the Fractional Schrödinger Equation on the Torus
We study the Cauchy problem for the 1-d periodic fractional Schrödinger equation with cubic nonlinearity. In particular we prove local well-posedness in Sobolev spaces, for solutions evolving from rough initial data. In addition we show the existence of global-in-time infinite energy solutions. Our tools include a new Strichartz estimate on the torus along with ideas that Bourgain developed in ...
متن کاملDispersion of Torsional Surface Wave in a Pre-Stressed Heterogeneous Layer Sandwiched Between Anisotropic Porous Half-Spaces Under Gravity
The study of surface waves in a layered media has their viable application in geophysical prospecting. This paper presents an analytical study on the dispersion of torsional surface wave in a pre-stressed heterogeneous layer sandwiched between a pre-stressed anisotropic porous semi-infinite medium and gravitating anisotropic porous half-space. The non-homogeneity within the intermediate layer a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016