Visualizations for assessing convergence and mixing of Markov chain Monte Carlo simulations
نویسندگان
چکیده
Bayesian inference often requires approximating the posterior distribution by Markov chain Monte Carlo sampling. The samples come from the true distribution only after the simulation has converged, which makes detecting convergence a central problem. Commonly, several simulation chains are started from different points, and their overlap is used as a measure of convergence. Convergence measures cannot tell the cause of convergence problems; it is suggested that complementing them with proper visualization will help. A novel connection is pointed out: linear discriminant analysis (LDA) minimizes the overlap of the simulation chains measured by a common multivariate convergence measure. LDA is thus justified for visualizing convergence. However, LDA makes restrictive assumptions about the chains, which can be relaxed by a recent extension called discriminative component analysis (DCA). Lastly, methods are introduced for unidentifiable models and model families with variable number of parameters, where straightforward visualization in the parameter space is not feasible.
منابع مشابه
Visualizations for Assessing Convergence and Mixing of MCMC
Bayesian inference often requires approximating the posterior distribution with Markov Chain Monte Carlo (MCMC) sampling. A central problem with MCMC is how to detect whether the simulation has converged. The samples come from the true posterior distribution only after convergence. A common solution is to start several simulations from different starting points, and measure overlap of the diffe...
متن کاملMarkov Chain Monte Carlo and Related Topics
This article provides a brief review of recent developments in Markov chain Monte Carlo methodology. The methods discussed include the standard Metropolis-Hastings algorithm, the Gibbs sampler, and various special cases of interest to practitioners. It also devotes a section on strategies for improving mixing rate of MCMC samplers, e.g., simulated tempering, parallel tempering, parameter expans...
متن کاملMarkov Chain Monte Carlo
Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...
متن کاملA Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 53 شماره
صفحات -
تاریخ انتشار 2009