Biomass Derived Nitrogen-Doped Highly Porous Carbon Material with a Hierarchical Porous Structure for High-Performance Lithium/Sulfur Batteries
نویسندگان
چکیده
A novel nitrogen doped mesoporous carbon (NMPC) with a hierarchical porous structure is prepared by simple carbonizing the green algae, which is applied as a host material to encapsulate sulfur for lithium/sulfur (Li/S) battery. The NMPC exhibits high pore volume as well as large specific surface area, and thus sulfur content in the S/NMPC composite reaches up to 63 wt %. When tested in a Li/S battery, the S/NMPC composite yields a high initial capacity of 1327 mAh·g-1 as well as 757 mAh·g-1 after 100 cycles at a current rate of 0.1 C, a reversible capacity of 642 was achieved even at 1 C. This good electrochemical performance of the S/NMPC composite could be attributed to a unique combination of mesopority and surface chemistry, allowing for the retention of the intermediate polysuflides within the carbon framework.
منابع مشابه
Biomass-Derived Oxygen and Nitrogen Co-Doped Porous Carbon with Hierarchical Architecture as Sulfur Hosts for High-Performance Lithium/Sulfur Batteries
In this work, a facile strategy to synthesize oxygen and nitrogen co-doped porous carbon (ONPC) is reported by one-step pyrolysis of waste coffee grounds. As-prepared ONPC possesses highly rich micro/mesopores as well as abundant oxygen and nitrogen co-doping, which is applied to sulfur hosts as lithium/sulfur batteries' appropriate cathodes. In battery testing, the sulfur/oxygen and nitrogen c...
متن کاملA Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries.
A Fe/Fe3O4/N-carbon composite consisting of a porous carbon matrix containing a highly conductive N-doped graphene-like network and Fe/Fe3O4 nanoparticles was prepared. The porous carbon has a hierarchical structure which is inherited from rice husk and the N-doped graphene-like network formed in situ. When used as an anode material for lithium batteries, the composite delivered a reversible ca...
متن کاملNitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.
Between the sheets: Sodium-ion batteries are an attractive, low-cost alternative to lithium-ion batteries. Nitrogen-doped porous carbon sheets are prepared by chemical activation of polypyrrole-functionalized graphene sheets. When using the sheets as anode material in sodium-ion batteries, their unique compositional and structural features result in high reversible capacity, good cycling stabil...
متن کاملEgg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage
Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterial...
متن کاملHierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries.
Novel hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres (3D NS-GSs) are synthesized using Ni microspheres as the template and using poly(vinylpyrrolidone) and (NH4)2S2O8 as the carbon and nitrogen precursor, respectively. As an anode material in lithium ion batteries, the 3D NS-GS electrode displays a superior capacity with excellent cycling stability.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2017