Presynaptic Na+ channels: locus, development, and recovery from inactivation at a high-fidelity synapse.
نویسندگان
چکیده
Na+ channel recovery from inactivation limits the maximal rate of neuronal firing. However, the properties of presynaptic Na+ channels are not well established because of the small size of most CNS boutons. Here we study the Na+ currents of the rat calyx of Held terminal and compare them with those of postsynaptic cells. We find that presynaptic Na+ currents recover from inactivation with a fast, single-exponential time constant (24 degrees C, tau of 1.4-1.8 ms; 35 degrees C, tau of 0.5 ms), and their inactivation rate accelerates twofold during development, which may contribute to the shortening of the action potential as the terminal matures. In contrast, recordings from postsynaptic cells in brainstem slices, and acutely dissociated, reveal that their Na+ currents recover from inactivation with a double-exponential time course (tau(fast) of 1.2-1.6 ms; tau(slow) of 80-125 ms; 24 degrees C). Surprisingly, confocal immunofluorescence revealed that Na+ channels are mostly absent from the calyx terminal but are instead highly concentrated in an unusually long (approximately 20-40 microm) unmyelinated axonal heminode. Outside-out patch recordings confirmed this segregation. Expression of Na(v)1.6 alpha-subunit increased during development, whereas the Na(v)1.2alpha-subunit was not present. Serial EM reconstructions also revealed a long pre-calyx heminode, and biophysical modeling showed that exclusion of Na+ channels from the calyx terminal produces an action potential waveform with a shorter half-width. We propose that the high density and polarized locus of Na+ channels on a long heminode are critical design features that allow the mature calyx of Held terminal to fire reliably at frequencies near 1 kHz.
منابع مشابه
Temperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملTemperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملSodium Channels as Targets for Volatile Anesthetics
The molecular mechanisms of modern inhaled anesthetics are still poorly understood although they are widely used in clinical settings. Considerable evidence supports effects on membrane proteins including ligand- and voltage-gated ion channels of excitable cells. Na(+) channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetic ef...
متن کاملInactivation of Presynaptic Calcium Current Contributes to Synaptic Depression at a Fast Central Synapse
Voltage-gated calcium channels are well characterized at neuronal somata but less thoroughly understood at the presynaptic terminal where they trigger transmitter release. In order to elucidate how the intrinsic properties of presynaptic calcium channels influence synaptic function, we have made direct recordings of the presynaptic calcium current (I(pCa)) in a brainstem giant synapse called th...
متن کاملEnhancing the fidelity of neurotransmission by activity-dependent facilitation of presynaptic potassium currents
Neurons convey information in bursts of spikes across chemical synapses where the fidelity of information transfer critically depends on synaptic input-output relationship. With a limited number of synaptic vesicles (SVs) in the readily releasable pool (RRP), how nerve terminals sustain transmitter release during intense activity remains poorly understood. Here we report that presynaptic K(+) c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 14 شماره
صفحات -
تاریخ انتشار 2005