Accelerated atherogenesis in completely ligated common carotid artery of apolipoprotein E-deficient mice
نویسندگان
چکیده
Complete ligation of the common carotid artery near its bifurcation induces neointimal formation due to smooth muscle cell proliferation in normolipidemic wild-type mice, but it was unknown what would happen to hyperlipidemic apolipoprotein E-deficient (Apoe-/-) mice. Examination of these mice revealed rapid development of atherosclerotic lesions in completely ligated carotid arteries within 4 weeks. Mice were fed a Western diet, starting 1 week before ligation, or a chow diet. Foam cell lesions formed as early as 1 week after ligation in mice fed the Western diet and 2 weeks in mice fed the chow diet. Fibrous lesions comprised of foam cells and smooth muscle cells and more advance lesions containing neovessels occurred at 2 and 4 weeks after ligation, respectively, in the Western diet group. Lesions were larger and more advanced in the Western diet group than the chow group. Neutrophil infiltration was observed in growing intimal lesions in both diet groups, while CD8+ T cells were found in lesions of chow-fed mice. This study demonstrates that Apoe-/- mice develop the entire spectrum of atherosclerosis in ligated carotid arteries in an accelerated manner and this model could be a valuable tool for investigating the development and therapy of atherosclerosis.
منابع مشابه
A simple method of plaque rupture induction in apolipoprotein E-deficient mice.
OBJECTIVE The development of a murine model of atherosclerotic plaque rupture. METHODS AND RESULTS The left common carotid arteries of male apolipoprotein E (apoE)-deficient mice (9 weeks old) were ligated just proximal to their bifurcations. After 4 weeks on a standard diet, the mice received polyethylene cuff placement just proximal to the ligated site, and the animals were then processed f...
متن کاملEndothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis.
Atherosclerosis develops in the arterial system at sites of low as well as low and oscillating shear stress. Previously, we demonstrated a shear-related distribution of ciliated endothelial cells in the embryonic cardiovascular system and postulated that the primary cilium is a component of the shear stress sensor, functioning as a signal amplifier. This shear-related distribution is reminiscen...
متن کاملAssociation of multiple cellular stress pathways with accelerated atherosclerosis in hyperhomocysteinemic apolipoprotein E-deficient mice.
BACKGROUND A causal relation between hyperhomocysteinemia (HHcy) and accelerated atherosclerosis has been established in apolipoprotein E-deficient (apoE-/-) mice. Although several cellular stress mechanisms have been proposed to explain the atherogenic effects of HHcy, including oxidative stress, endoplasmic reticulum (ER) stress, and inflammation, their association with atherogenesis has not ...
متن کاملInduction of Rapid Atherogenesis by Perivascular Carotid Collar Placement in Apolipoprotein E–Deficient and Low-Density Lipoprotein Receptor–Deficient Mice
Deficient Mice − Deficient and Low-Density Lipoprotein Receptor − Apolipoprotein E Induction of Rapid Atherogenesis by Perivascular Carotid Collar Placement in Print ISSN: 0009-7322. Online ISSN: 1524-4539 Copyright © 2001 American Heart Association, Inc. All rights reserved. is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Circulation doi: 10.1161/01.CIR...
متن کاملInduction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice.
BACKGROUND Perivascular collar placement has been used as a means for localized atherosclerosis induction in a variety of experimental animal species. In mice, however, atherosclerosis-like lesions have thus far not been obtained by this method. The aim of this study was the development of a mouse model of rapid, site-controlled atherogenesis. METHODS AND RESULTS Silastic collars were placed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017