SACON: A Consensus Based Model for Background Subtraction
نویسندگان
چکیده
Statistical background modeling is a fundamental and important part for many visual tracking systems and other computer vision applications. This paper presents an effective and adaptive background modeling method for detecting foreground objects in both static and dynamic scenes. The proposed method computes SAmple CONsensus (SACON) of the background samples and estimates a statistical model per pixel. SACON exploits both color and motion information to detect foreground objects. SACON can deal with complex background scenarios including non-stationary scenes (such as moving trees, rain, and fountains), moved/inserted background objects, slowly moving foreground objects, illumination changes etc. Numerous experiments on both indoor and outdoor video sequences show that the method is robust to various types of background scenarios and, compared with several state-of-the-art methods, can achieve very promising performance.
منابع مشابه
A consensus-based method for tracking: Modelling background scenario and foreground appearance
Modelling of the background (uninteresting parts of the scene), and of the foreground, play important roles in the tasks of visual detection and tracking of objects. This paper presents an effective and adaptive background modelling method for detecting foreground objects in both static and dynamic scenes. The proposed method computes SAmple CONsensus (SACON) of the background samples and est...
متن کاملA Novel Approach to Background Subtraction Using Visual Saliency Map
Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...
متن کاملA PRACTICAL APPROACH TO REAL-TIME DYNAMIC BACKGROUND GENERATION BASED ON A TEMPORAL MEDIAN FILTER
In many computer vision applications, segmenting and extraction of moving objects in video sequences is an essential task. Background subtraction, by which each input image is subtracted from the reference image, has often been used for this purpose. In this paper, we offer a novel background-subtraction technique for real-time dynamic background generation using color images that are taken fro...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005