Slow-slip evolves into megathrust earthquakes in 2D numerical simulations
نویسندگان
چکیده
[1] Slow slip events (SSE) in many subduction zones incrementally stress the adjacent locked megathrust, suggesting that they could potentially either trigger or evolve into damaging earthquakes. We explore this with 2D quasidynamic simulations with rate-state friction, dilatancy, and coupled 1D pore-fluid and heat transport. Steady-state weakening friction allows transient slip to nucleate, but is inhibited by dilatant strengthening and destabilized by thermal pressurization. SSE spontaneously nucleate in Low Effective-Stress Velocity-Weakening (LESVW) regions. If the dimension of the LESVW is relatively small the SSE are trapped at its updip end, imparting a strong stress concentration in the locked zone. After several centuries SSE penetrate into the region of higher effective stress, where thermal pressurization eventually leads to dynamic rupture. For larger LESVW regions SSE tend to increase in length with time; ultimately higher slip speeds enhance thermal weakening, leading to dynamic instability within the SSE zone. In both cases the onset of the ultimate SSE is essentially indistinguishable from preceding events. Citation: Segall, P., and A. M. Bradley (2012), Slow-slip evolves into megathrust earthquakes in 2D numerical simulations, Geophys. Res. Lett., 39, L18308, doi:10.1029/2012GL052811.
منابع مشابه
Slow earthquakes linked along dip in the Nankai subduction zone.
We identified a strong temporal correlation between three distinct types of slow earthquakes distributed over 100 kilometers along the dip of the subducting oceanic plate at the western margin of the Nankai megathrust rupture zone, southwest Japan. In 2003 and 2010, shallow very-low-frequency earthquakes near the Nankai trough as well as nonvolcanic tremor at depths of 30 to 40 kilometers were ...
متن کاملMigration process of very low - frequency events based on a chain - reaction model 1 and its application to the detection of preseismic slip for megathrust earthquakes 2 3
15 In order to reproduce slow earthquakes with short duration such as very low 16 frequency events (VLFs) migrating along the trench direction as swarms, we apply a 17 3-D subduction plate boundary model based on the slowness law of rate-and 18 2 state-dependent friction, introducing close-set numerous small asperities 1 (rate-weakening regions) at a depth of 30 km under high pore pressure cond...
متن کاملCompressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures
Megathrust earthquakes rupture a broad zone of the subducting plate interface in both along-strike and along-dip directions. The along-dip rupture characteristics of megathrust events, e.g., their slip and energy radiation distribution, reflect depth-varying frictional properties of the slab interface. Here, we report high-resolution frequency-dependent seismic radiation of the four largest meg...
متن کاملEffects of subducted seamounts on megathrust earthquake nucleation and rupture propagation
[1] Subducted seamounts have been linked to interplate earthquakes, but their specific effects on earthquake mechanism remain controversial. A key question is under what conditions a subducted seamount will generate or stop megathrust earthquakes. Here we show results from numerical experiments in the framework of rateand state-dependent friction law in which a seamount is characterized as a pa...
متن کاملSlip segmentation and slow rupture to the trench during the 2015, Mw8.3 Illapel, Chile earthquake
The 2015 Mw8.3 Illapel, Chile earthquake is the latest megathrust event on the central segment of that subduction zone. It generated strong ground motions and a large (up to 11m runup) tsunami which prompted the evacuation of more than 1 million people in the first hours following the event. Observations during recent earthquakes suggest that these phenomena can be associated with rupture on di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012