Synchronization of an excitatory integrate-and-fire neural network.
نویسندگان
چکیده
In this paper, we study the influence of the coupling strength on the synchronization behavior of a population of leaky integrate-and-fire neurons that is self-excitatory with a population density approach. Each neuron of the population is assumed to be stochastically driven by an independent Poisson spike train and the synaptic interaction between neurons is modeled by a potential jump at the reception of an action potential. Neglecting the synaptic delay, we will establish that for a strong enough connectivity between neurons, the solution of the partial differential equation which describes the population density function must blow up in finite time. Furthermore, we will give a mathematical estimate on the average connection per neuron to ensure the occurrence of a burst. Interpreting the blow up of the solution as the presence of a Dirac mass in the firing rate of the population, we will relate the blow up of the solution to the occurrence of the synchronization of neurons. Fully stochastic simulations of a finite size network of leaky integrate-and-fire neurons are performed to illustrate our theoretical results.
منابع مشابه
Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size
We study the synchronization of fully-connected and totally excitatory integrate and fire neural networks in presence of Gaussian white noises. Using a large deviation principle, we prove the stability of the synchronized state under stochastic perturbations. Then, we give a lower bound on the probability of synchronization for networks which are not initially synchronized. This bound shows the...
متن کاملSynchrony and Desynchrony in Integrate-and-Fire Oscillators
Due to many experimental reports of synchronous neural activity in the brain, there is much interest in understanding synchronization in networks of neural oscillators and its potential for computing perceptual organization. Contrary to Hopfield and Herz (1995), we find that networks of locally coupled integrate-and-fire oscillators can quickly synchronize. Furthermore, we examine the time need...
متن کاملA Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks
Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving...
متن کاملSynchronization Properties of Pulse-Coupled Resonate-and-Fire Neuron Circuits and Their Application
Introduction: Recent advances in neuroscience suggest that spiking neurons in cortical area are classified into two categories: integrators and resonators [1]. These neurons are different in the sensitivity to the timing of stimulus, and therefore show different synchronization properties in pulse-coupled systems. It is interested that the distribution of such neurons are layer-specific and dep...
متن کاملMemristor Bridge Synapse Application for Integrate and Fire and Hodgkin-Huxley Neuron Cell
Memory resistor or memristor is already fabricated successfully using current nano dimension technology. Based on its unique hysteresis, the amount of resistance remains constant over time, controlled by the time, the amplitude, and the polarity of the applied voltage. The unique hysteretic current-voltage characteristic in the memristor causes this element to act as a non-volatile resistive me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bulletin of mathematical biology
دوره 75 4 شماره
صفحات -
تاریخ انتشار 2013