Some basic questions on mechanosensing in cell–substrate interaction
نویسندگان
چکیده
Cells constantly probe their surrounding microenvironment by pushing and pulling on the extracellular matrix (ECM). While it is widely accepted that cell induced traction forces at the cell–matrix interface play essential roles in cell signaling, cell migration and tissue morphogenesis, a number of puzzling questions remain with respect to mechanosensing in cell–substrate interactions. Here we show that these open questions can be addressed by modeling the cell–substrate system as a pre-strained elastic disk attached to an elastic substrate via molecular bonds at the interface. Based on this model, we establish analytical and numerical solutions for the displacement and stress fields in both cell and substrate, as well as traction forces at the cell–substrate interface. We show that the cell traction generally increases with distance away from the cell center and that the traction-distance relationship changes from linear on soft substrates to exponential on stiff substrates. These results indicate that cell adhesion and migration behaviors can be regulated by cell shape and substrate stiffness. Our analysis also reveals that the cell traction increases linearly with substrate stiffness on soft substrates but then levels off to a constant value on stiff substrates. This biphasic behavior in the dependence of cell traction on substrate stiffness immediately sheds light on an existing debate on whether cells sense mechanical force or deformation when interacting with their surroundings. Finally, it is shown that the cell induced deformation field decays exponentially with distance away from the cell. The characteristic length of this decay is comparable to the cell size and provides a quantitative measure of how far cells feel into the ECM. & 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Modeling mechanosensing and its effect on the migration and proliferation of adherent cells.
The behavior of normal adherent cells is influenced by the stiffness of the substrate they are anchored to. Cells are able to detect substrate mechanical properties by actively generating contractile forces and use this information to migrate and proliferate. In particular, the speed and direction of cell crawling, as well as the rate of cell proliferation, vary with the substrate compliance an...
متن کاملProteomic Dissection of Nanotopography-Sensitive Mechanotransductive Signaling Hubs that Foster Neuronal Differentiation in PC12 Cells
Neuronal cells are competent in precisely sensing nanotopographical features of their microenvironment. The perceived microenvironmental information will be "interpreted" by mechanotransductive processes and impacts on neuronal functioning and differentiation. Attempts to influence neuronal differentiation by engineering substrates that mimic appropriate extracellular matrix (ECM) topographies ...
متن کاملEvaluation the interaction of ABC multidrug transporter MDR1 with thymoquinone: substrate or inhibitor?
Objective(s): Thymoquinone (TQ) has valuable medical properties like anticancer effects. Development of multidrug resistance (MDR) phenotype is one of the most important factors in failure of cancer chemotherapy. The aim of this study was to evaluate the mode of interaction of TQ and MDR1, a major MDR-related protein in gastric cancer drug resistant EPG85-257RDB cells,...
متن کاملMechanosensing in T lymphocyte activation.
Mechanical forces play an increasingly recognized role in modulating cell function. This report demonstrates mechanosensing by T cells, using polyacrylamide gels presenting ligands to CD3 and CD28. Naive CD4 T cells exhibited stronger activation, as measured by attachment and secretion of IL-2, with increasing substrate elastic modulus over the range of 10-200 kPa. By presenting these ligands o...
متن کاملInfluence of the PDMS substrate stiffness on the adhesion of Acanthamoeba castellanii
BACKGROUND Mechanosensing of cells, particularly the cellular response to substrates with different elastic properties, has been discovered in recent years, but almost exclusively in mammalian cells. Much less attention has been paid to mechanosensing in other cell systems, such as in eukaryotic human pathogens. RESULTS We report here on the influence of substrate stiffness on the adhesion of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014