Optimal multivariate matching before randomization.
نویسندگان
چکیده
Although blocking or pairing before randomization is a basic principle of experimental design, the principle is almost invariably applied to at most one or two blocking variables. Here, we discuss the use of optimal multivariate matching prior to randomization to improve covariate balance for many variables at the same time, presenting an algorithm and a case-study of its performance. The method is useful when all subjects, or large groups of subjects, are randomized at the same time. Optimal matching divides a single group of 2n subjects into n pairs to minimize covariate differences within pairs-the so-called nonbipartite matching problem-then one subject in each pair is picked at random for treatment, the other being assigned to control. Using the baseline covariate data for 132 patients from an actual, unmatched, randomized experiment, we construct 66 pairs matching for 14 covariates. We then create 10000 unmatched and 10000 matched randomized experiments by repeatedly randomizing the 132 patients, and compare the covariate balance with and without matching. By every measure, every one of the 14 covariates was substantially better balanced when randomization was performed within matched pairs. Even after covariance adjustment for chance imbalances in the 14 covariates, matched randomizations provided more accurate estimates than unmatched randomizations, the increase in accuracy being equivalent to, on average, a 7% increase in sample size. In randomization tests of no treatment effect, matched randomizations using the signed rank test had substantially higher power than unmatched randomizations using the rank sum test, even when only 2 of 14 covariates were relevant to a simulated response. Unmatched randomizations experienced rare disasters which were consistently avoided by matched randomizations.
منابع مشابه
Randomization , Rerandomization and Matching in Clinical Trials
Randomization was a key contribution of Sir Ronald Fisher to the conduct of scientific investigations. Along with the protective aspects of randomization, Fisher also noted that the distribution induced by randomization can form the basis of inference. Indeed, in some instances, the randomization test and related procedures seem to be the only tools available for inference. Several authors have...
متن کامل185-2007: Local and Global Optimal Propensity Score Matching
Propensity score-matching methods are often used to control for bias in observational studies when randomization is not possible. This paper describes how to match samples using both local and global optimal matching algorithms. The paper includes macros to perform the nearest available neighbor, caliper, and radius matching methods with or without replacement and matching treated observations ...
متن کاملMultivariate permutation test to compare survival curves for matched data
BACKGROUND In the absence of randomization, the comparison of an experimental treatment with respect to the standard may be done based on a matched design. When there is a limited set of cases receiving the experimental treatment, matching of a proper set of controls in a non fixed proportion is convenient. METHODS In order to deal with the highly stratified survival data generated by multipl...
متن کاملMultivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching package for R
Matching is an R package which provides functions for multivariate and propensity score matching and for finding optimal covariate balance based on a genetic search algorithm. A variety of univariate and multivariate metrics to determine if balance actually has been obtained are provided. The underlying matching algorithm is written in C++, makes extensive use of system BLAS and scales efficien...
متن کاملAnalytical Matching of Optimal Damping Characteristics Curve for Vehicle Passive Suspensions
To facilitate the damping matching of dampers for vehicle passive suspensions, this paper proposes an analytical matching method of the optimal piecewise linear damping characteristics curve. Based on the vehicle vibration model, taking the suspension dynamic deflection as the constraint, by the vibration acceleration and the wheel dynamic load, an objective function about the relative damping ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biostatistics
دوره 5 2 شماره
صفحات -
تاریخ انتشار 2004