Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria
نویسندگان
چکیده
The modulation of developmental biochemical pathways by mechanical cues is an emerging feature of animal development, but its evolutionary origins have not been explored. Here we show that a common mechanosensitive pathway involving β-catenin specifies early mesodermal identity at gastrulation in zebrafish and Drosophila. Mechanical strains developed by zebrafish epiboly and Drosophila mesoderm invagination trigger the phosphorylation of β-catenin-tyrosine-667. This leads to the release of β-catenin into the cytoplasm and nucleus, where it triggers and maintains, respectively, the expression of zebrafish brachyury orthologue notail and of Drosophila Twist, both crucial transcription factors for early mesoderm identity. The role of the β-catenin mechanosensitive pathway in mesoderm identity has been conserved over the large evolutionary distance separating zebrafish and Drosophila. This suggests mesoderm mechanical induction dating back to at least the last bilaterian common ancestor more than 570 million years ago, the period during which mesoderm is thought to have emerged.
منابع مشابه
Origin and evolution of endoderm and mesoderm.
Germ layers are defined as cell layers that arise during early animal development, mostly during gastrulation, and that give rise to all tissues and organs in adults. The evolutionary origin of the inner germ layers, endoderm and mesoderm, and their relationship have been a matter of debate for decades. In this review we summarize the major modes of endoderm and mesoderm formation found in Meta...
متن کاملInvestigating the origins of triploblasty: 'mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa).
Mesoderm played a crucial role in the radiation of the triploblastic Bilateria, permitting the evolution of larger and more complex body plans than in the diploblastic, non-bilaterian animals. The sea anemone Nematostella is a non-bilaterian animal, a member of the phylum Cnidaria. The phylum Cnidaria (sea anemones, corals, hydras and jellyfish) is the likely sister group of the triploblastic B...
متن کاملInsights into the establishment of left-right asymmetries in vertebrates.
The body-plan of vertebrates, while exteriorly essentially symmetric along its medio-lateral plane, displays numerous left-right differences in the disposition and placement of internal organs. Such left-right asymmetries, established during embryogenesis, are controlled by complex epigenetic and genetic cascades that impart laterality information to the different embryo structures and organ pr...
متن کاملMesoderm patterning and morphogenesis in the polychaete Alitta virens (Spiralia, Annelida): Expression of mesodermal markers Twist, Mox, Evx and functional role for MAP kinase signaling
Mesoderm represents the evolutionary youngest germ layer and forms numerous novel tissues in bilaterian animals. Despite the established conservation of the gene regulatory networks that drive mesoderm differentiation (e.g. myogenesis), mechanisms of mesoderm specification are highly variable in distant model species. Thus, broader phylogenetic sampling is required to reveal common features of ...
متن کاملDivergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
Developmental gene regulatory networks (GRNs) are assemblages of gene regulatory interactions that direct ontogeny of animal body plans. Studies of GRNs operating in the early development of euechinoid sea urchins have revealed that little appreciable change has occurred since their divergence ∼90 million years ago (mya). These observations suggest that strong conservation of GRN architecture w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013