Synthetic 3D Model-Based Object Class Detection and Pose Estimation. (Détection de Classes d'Objets et Estimation de leurs Poses à partir de Modèles 3D Synthétiques)
نویسنده
چکیده
The present thesis describes 3D model-based approaches to object class detection and pose estimation on single 2D images. We introduce learning, detection and estimation steps adapted to the use of synthetically rendered training data with known 3D geometry. Most existing approaches recognize object classes for a particular viewpoint or combine classifiers for a few discrete views. By using CAD models and rendering techniques from the domain of computer graphics, we propose instead to build 3D representations of object classes which allow to handle viewpoint changes and intra-class variability. We outline an unsupervised filtering process of pose and class discriminant local features on purely synthetic training data, and we derive a part model which discriminatively learns the object class appearance from an annotated database of real images and builds a generative representation of its 3D geometry from a database of synthetic CAD models. During detection, we introduce a 3D voting scheme to reinforce geometric coherence by means of a robust pose estimation, and we propose an alternative probabilistic method which evaluates the likelihood of groups of 2D part detections with respect to a full 3D geometry. Both approaches yield approximate 3D bounding boxes in addition to 2D localizations; these initializations are subsequently improved and disambiguated by a registration scheme aligning arbitrary 3D models to 2D images. The work is evaluated on several standard benchmark datasets and achieves state-of-the-art performance for 2D detection in addition to providing 3D pose estimations from single images.
منابع مشابه
Simulation de communautés de plantes et dynamique des populations
RÉSUMÉ. Cet article présente l’étude de la coévolution de communautés de plantes selon deux modèles de différents niveaux d’abstraction. Les plantes virtuelles, évoluant dans un environnement 3D, sont basées sur le principe des multi-agents, afin de décrire la communication et l’échange de ressources au niveau de leurs organes. A partir d’observations sur des interactions écologiques d’espèces ...
متن کاملProbabilistic Pose Recovery Using Learned Hierarchical Object Models
This paper presents a probabilistic representation for 3D objects, and details the mechanism of inferring the pose of real-world objects from vision. Our object model has the form of a hierarchy of increasingly expressive 3D features, and probabilistically represents 3D relations between these. Features at the bottom of the hierarchy are bound to local perceptions; while we currently only use v...
متن کاملSupervision de comportements remarquables d'objets mobiles à partir du suivi et de l'analyse de leurs trajectoires spatio-temporelles
Dans le cadre d’une collaboration avec la société Intactile DESIGN, nous nous intéressons aux scénarios de transports maritimes (déplacements de bateaux) issus de collecte de gros flux de données acquises à partir des objets mobiles d’intérêt. Notre réflexion porte sur la modélisation, la gestion et le traitement de ces données afin de détecter des “patrons” ou des “anomalies” au sein des compo...
متن کاملA Projective Framework for Structure and Motion Recovery from Two Views of a Piecewise Planar Scene
In this paper, we consider the problem of nding an optimal reconstruction from two views of a piecewise planar scene. We consider the general case of uncalibrated cameras, hence place us in a projective framework. In this case, there is no meaningful metric information about the object space that could be used to de ne optimization criteria. Taking into account that the images are then the only...
متن کاملContributions en segmentation statistique d'images et reconnaissance de formes 2D. (Contributions to statistical image segmentation and 2D pattern Recognition)
3 1 Synthèse des Travaux 5 1.1 Segmentation Statistique d’Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Détection et Reconnaissance de Formes 2D . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Plan du manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Segmentation Statistique d’Images 13 2.1 Segmentation non supervisée d’im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010