Degrees of extensionality in the theory of Böhm trees and Sallé's conjecture
نویسندگان
چکیده
The main observational equivalences of the untyped lambda-calculus have been characterized in terms of extensional equalities between B\"ohm trees. It is well known that the lambda-theory H*, arising by taking as observables the head normal forms, equates two lambda-terms whenever their B\"ohm trees are equal up to countably many possibly infinite eta-expansions. Similarly, two lambda-terms are equal in Morris's original observational theory H+, generated by considering as observable the beta-normal forms, whenever their B\"ohm trees are equal up to countably many finite eta-expansions. The lambda-calculus also possesses a strong notion of extensionality called"the omega-rule", which has been the subject of many investigations. It is a longstanding open problem whether the equivalence B-omega obtained by closing the theory of B\"ohm trees under the omega-rule is strictly included in H+, as conjectured by Sall\'e in the seventies. In this paper we demonstrate that the two aforementioned theories actually coincide, thus disproving Sall\'e's conjecture. The proof technique we develop for proving the latter inclusion is general enough to provide as a byproduct a new characterization, based on bounded eta-expansions, of the least extensional equality between B\"ohm trees. Together, these results provide a taxonomy of the different degrees of extensionality in the theory of B\"ohm trees.
منابع مشابه
Refutation of Sallé's Longstanding Conjecture
The ⁄-calculus possesses a strong notion of extensionality, called “the Ê-rule”, which has been the subject of many investigations. It is a longstanding open problem whether the equivalence obtained by closing the theory of Böhm trees under the Ê-rule is strictly included in Morris’s original observational theory, as conjectured by Sallé in the seventies. In a recent work, Breuvart et al. have ...
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملComputing with Böhm Trees
This paper develops a general technique to analyze the head reduction of a term in a context. This technique is used to give a direct proof of the theorem of Hyland and Wadsworth : two -terms that have the same Böhm trees, up to (possibly infinite) -equivalence, are operationally equivalent. It is also used to prove a conjecture of R. Kerth : Every unsolvable -term has a decoration. This syntac...
متن کاملLimit distribution of the degrees in scaled attachment random recursive trees
We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...
متن کاملDegrees in $k$-minimal label random recursive trees
This article describes the limiting distribution of the degrees of nodes has been derived for a kind of random tree named k-minimal label random recursive tree, as the size of the tree goes to infinity. The outdegree of the tree is equal to the number of customers in a pyramid marketing agency immediatly alluring
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.07320 شماره
صفحات -
تاریخ انتشار 2018