Cisplatin triggers cancer stem cell enrichment in platinum-resistant cells through NF-κB-TNFα-PIK3CA loop

نویسندگان

  • Bhushan Thakur
  • Pritha Ray
چکیده

BACKGROUND Parallel to complex alteration in molecular and cellular events, enrichment of cancer stem cells (CSC) contributes significantly in deliberation and maintenance of cisplatin resistance. Cisplatin mediated CSC enrichment is well established in various cancers, yet the underlying mechanism is largely unknown. Cisplatin also promotes transcriptional upregulation of PIK3CA, hence activating PI3K/AKT signaling in resistant cells. However, such cisplatin-induced transcriptional regulators of PIK3CA and their impact on cancer stem cell population in resistant cells are largely unknown. METHODS DNA-binding protein pulldown using PIK3CA promoter as bait followed by nLCMS was used to identify, cisplatin-induced potential transcriptional regulators of PIK3CA promoter. PIK3CA promoter activity was estimated by luciferase based reporter assay. ChIP was used to assess interaction of NF-κB with PIK3CA promoter. CSC-enriched side-population was sorted using DCV-dye exclusion methods. All the gene expression levels were assessed using qPCR. RESULTS Using a transcription factor pull-down assay with PIK3CA promoter, we identified NF-κB as a prime regulator, which escalates both TNFα and PIK3CA expression only in CSC enriched side-population (SP) but not in non side-population (NSP) in platinum resistant ovarian cancer cells upon cisplatin treatment. This SP-specific NF-κB-TNFα-PIK3CA bi-modal loop, on one hand, maintains persistent activation of NF-κB through TNFα- NF-κB autocrine loop, while NF-κB-PIK3CA loop nurture CSC population under cisplatin treatment. Activation of PI3K/AKT signalling drives SP's into an undifferentiated, anti-apoptotic stage through upregulating P21, P27,cFLIP expression. Contrarily, lack of active NF-κB-TNFα-PIK3CA loop makes NSPs vulnerable towards cisplatin and undergoes apoptosis. Altogether, cisplatin enriches cancer stem cells properties in SP fraction, which is evident from increased levels of pluripotency gene OCT4/SOX2/NANOG expression. Disruption of PIK3CA-NF-κB loop by Wortamannin reduces SP fraction by 1.4-1.6 fold in control and treated cells. CONCLUSION Together, our study signifies an active role of NF-κB-TNFα-PIK3CA bi-modal loop in cisplatin-mediated promotion and maintenance of CSC-like population in platinum-resistant cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triptolide avoids cisplatin resistance and induces apoptosis via the reactive oxygen species/nuclear factor-κB pathway in SKOV3PT platinum-resistant human ovarian cancer cells

An acquired resistance to platinum-based drugs has emerged as a significant impediment to effective ovarian cancer therapy. The present study explored the anticancer mechanisms of triptolide (TPL) in SKOV3PT platinum-resistant human ovarian cancer cells and observed that TPL activated caspase 3 and induced the dose-dependent apoptosis of the SKOV3PT cells. Furthermore, TPL inhibited complex I o...

متن کامل

Generation of Cisplatin-Resistant Ovarian Cancer Cell Lines

Ovarian cancer is the most lethal gynecological cancer in which cisplatin-based treatment plays fundamental role as the first line chemotherapy option. However, development of platinum-resistance is a critical and poorly understood problem in ovarian cancer treatment. Although in vitro generation of platinum-resistant ovarian cancer cell lines is a long established approach to uncover the molec...

متن کامل

p62/SQSTM1 as an oncotarget mediates cisplatin resistance through activating RIP1‐NF‐κB pathway in human ovarian cancer cells

Platinum-based therapeutic strategies have been widely used in ovarian cancer treatment. However, drug resistance has greatly limited therapeutic efficacy. Recently, tolerance to cisplatin has been attributed to other factors unrelated to DNA. p62 (also known as SQSTM1) functions as a multifunctional hub participating in tumorigenesis and may be a therapeutic target. Our previous study showed t...

متن کامل

EGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells

Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancy worldwide. Although the majority of EOC patients achieve clinical remission after induction therapy, over 80% relapse and succumb to the chemoresistant disease. Previous investigations have demonstrated the association of epidermal growth factor receptor (EGFR) with resistance to cytotoxic chemotherap...

متن کامل

Interaction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study

Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2017