Structural basis for protein trans-splicing by a bacterial intein-like domain--protein ligation without nucleophilic side chains.
نویسندگان
چکیده
UNLABELLED Protein splicing in trans by split inteins has become a useful tool for protein engineering in vivo and in vitro. Inteins require Cys, Ser or Thr at the first residue of the C-terminal flanking sequence because a thiol or hydroxyl group in the side chains is a nucleophile indispensable for the trans-esterification step during protein splicing. Newly-identified distinct sequences with homology to the hedgehog/intein superfamily, called bacterial intein-like (BIL) domains, often do not have Cys, Ser, or Thr as the obligatory nucleophilic residue found in inteins. We demonstrated that BIL domains from Clostridium thermocellum (Cth) are proficient at protein splicing without any sequence changes. We determined the first solution NMR structure of a BIL domain, CthBIL4, to guide engineering of split BIL domains for protein ligation. The newly-engineered split BIL domain could catalyze protein ligation by trans-splicing. Protein ligation without any nucleophilic residues of Cys, Ser and Thr could alleviate junction sequence requirements for protein trans-splicing imposed by split inteins and could broaden applications of protein ligation by protein trans-splicing. DATABASE The resonance assignments and structure coordinates have been deposited in BMRB (18653) and RCSB (2LWY).
منابع مشابه
Structure-based engineering and comparison of novel split inteins for protein ligation.
Protein splicing is an autocatalytic process involving self-excision of an internal protein domain, the intein, and concomitant ligation of the two flanking sequences, the exteins, with a peptide bond. Protein splicing can also take place in trans by naturally split inteins or artificially split inteins, ligating the exteins on two different polypeptide chains into one polypeptide chain. Protei...
متن کاملRescue of protein splicing activity from a Magnetospirillum magnetotacticum intein-like element.
The self-catalytic protein splicing mechanism is mediated by the intein plus the first amino acid following the intein C-terminus (termed the +1 residue). Although polymorphisms of conserved residues elsewhere in inteins have been widely reported, no splicing-competent intein has been observed without a Ser, Thr or Cys in this functionally essential +1 position. This residue is the nucleophile ...
متن کاملNMR resonance assignment of DnaE intein from Nostoc punctiforme.
DnaE intein from Nostoc punctiforme (Npu) is one of naturally occurring split inteins, which has robust protein splicing activity. Highly efficient trans-splicing activity of NpuDnaE intein could widen various biotechnological applications. However, structural basis of the efficient protein splicing activity is poorly understood. As a first step toward better understanding of protein trans-spli...
متن کاملSolution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification.
Naturally split DnaE intein from Nostoc punctiforme (Npu) has robust protein trans-splicing activity and high tolerance of sequence variations at the splicing junctions. We determined the solution structure of a single chain variant of NpuDnaE intein by NMR spectroscopy. Based on the NMR structure and the backbone dynamics of the single chain NpuDnaE intein, we designed a functional split varia...
متن کاملIn Vivo and In Vitro Protein Ligation by Naturally Occurring and Engineered Split DnaE Inteins
BACKGROUND Protein trans-splicing by naturally occurring split DnaE inteins is used for protein ligation of foreign peptide fragments. In order to widen biotechnological applications of protein trans-splicing, it is highly desirable to have split inteins with shorter C-terminal fragments, which can be chemically synthesized. PRINCIPAL FINDINGS We report the identification of new functional sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The FEBS journal
دوره 280 14 شماره
صفحات -
تاریخ انتشار 2013