Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury.

نویسندگان

  • Brian K Kwon
  • Jie Liu
  • Corrie Messerer
  • Nao R Kobayashi
  • John McGraw
  • Loren Oschipok
  • Wolfram Tetzlaff
چکیده

Scientific interest to find a treatment for spinal cord injuries has led to the development of numerous experimental strategies to promote axonal regeneration across the spinal cord injury site. Although these strategies have been developed in acute injury paradigms and hold promise for individuals with spinal cord injuries in the future, little is known about their applicability for the vast majority of paralyzed individuals whose injury occurred long ago and who are considered to have a chronic injury. Some studies have shown that the effectiveness of these approaches diminishes dramatically within weeks after injury. Here we investigated the regenerative capacity of rat rubrospinal neurons whose axons were cut in the cervical spinal cord 1 year before. Contrary to earlier reports, we found that rubrospinal neurons do not die after axotomy but, rather, they undergo massive atrophy that can be reversed by applying brain-derived neurotrophic factor to the cell bodies in the midbrain. This administration of neurotrophic factor to the cell body resulted in increased expression of growth-associated protein-43 and Talpha1 tubulin, genes thought to be related to axonal regeneration. This treatment promoted the regeneration of these chronically injured rubrospinal axons into peripheral nerve transplants engrafted at the spinal cord injury site. This outcome is a demonstration of the regenerative capacity of spinal cord projection neurons a full year after axotomy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lithium chloride reinforces the regeneration-promoting effect of chondroitinase ABC on rubrospinal neurons after spinal cord injury.

After spinal cord injury, enzymatic digestion of chondroitin sulfate proteoglycans promotes axonal regeneration of central nervous system neurons across the lesion scar. We examined whether chondroitinase ABC (ChABC) promotes the axonal regeneration of rubrospinal tract (RST) neurons following injury to the spinal cord. The effect of a GSK-3beta inhibitor, lithium chloride (LiCl), on the regene...

متن کامل

Undesired effects of a combinatorial treatment for spinal cord injury--transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus.

Transplantations of olfactory ensheathing cells (OECs) have been reported to promote axonal regeneration and functional recovery after spinal cord injury, but have demonstrated limited growth promotion of rat rubrospinal axons after a cervical dorsolateral funiculus crush. Rubrospinal neurons undergo massive atrophy after cervical axotomy and show only transient expression of regeneration-assoc...

متن کامل

Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury.

Transplants of fibroblasts genetically modified to express BDNF (Fb/BDNF) have been shown to promote regeneration of rubrospinal axons and recovery of forelimb function when placed acutely into the injured cervical spinal cord of adult rats. Here we investigated whether Fb/BDNF cells could stimulate supraspinal axon regeneration and recovery after chronic (4 week) injury. Adult female Sprague-D...

متن کامل

Repair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell

Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...

متن کامل

Genetic mutation of the class-3 semaphorin receptor component Npn-2 does not enhance rubrospinal tract regeneration

After spinal cord injury, axon outgrowth inhibitors present in myelin and in the neural scar are considered to contribute to the failure of injured axons to re-establish functional connections. Class-3 semaphorins are expressed by the meningeal cells that infiltrate the glial scar after injury and signal by binding to neuropilin-1 (Npn-1) or neuropilin-2 (Npn-2). Since neurons of the red nucleu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 5  شماره 

صفحات  -

تاریخ انتشار 2002