A Distributed, Asynchronous and Incremental Algorithm for Nonconvex Optimization: An ADMM Based Approach

نویسنده

  • Mingyi Hong
چکیده

The alternating direction method of multipliers (ADMM) has been popular for solving many signal processing problems, convex or nonconvex. In this paper, we study an asynchronous implementation of the ADMM for solving a nonconvex nonsmooth optimization problem, whose objective is the sum of a number of component functions. The proposed algorithm allows the problem to be solved in a distributed, asynchronous and incremental manner. First, the component functions can be distributed to different computing nodes, who perform the updates asychronously without coordinating with each other. Two sources of asynchrony are covered by our algorithm: one is caused by the heterogeneity of the computational nodes, and the other arises from unreliable communication links. Second, the algorithm can be viewed as implementing an incremental algorithm where at each step the (possibly delayed) gradients of only a subset of component functions are updated. We show that when certain bounds are put on the level of asynchrony, the proposed algorithm converges to the set of stationary solutions (resp. optimal solutions) for the nonconvex (resp. convex) problem. To the best of our knowledge, the proposed ADMM implementation can tolerate the highest degree of asynchrony, among all known asynchronous variants of the ADMM. Moreover, it is the first ADMM implementation that can deal with nonconvexity and asynchrony at the same time. M. Hong is with the Department of Industrial and Manufacturing Systems Engineering (IMSE), Iowa State University, Ames, IA 50011, USA. Email: [email protected] December 19, 2014 DRAFT

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asynchronous Non-Convex Optimization for Separable Problems

This paper considers the distributed optimization of a sum of locally observable, nonconvex functions. The optimization is performed over a multi-agent networked system, and each local function depends only on a subset of the variables. An asynchronous and distributed alternating directions method of multipliers (ADMM) method that allows the nodes to defer or skip the computation and transmissi...

متن کامل

A Block-wise, Asynchronous and Distributed ADMM Algorithm for General Form Consensus Optimization

Many machine learning models, including those with non-smooth regularizers, can be formulated as consensus optimization problems, which can be solved by the alternating direction method of multipliers (ADMM). Many recent efforts have been made to develop asynchronous distributed ADMM to handle large amounts of training data. However, all existing asynchronous distributed ADMM methods are based ...

متن کامل

Asynchronous ADMM for Distributed Non-Convex Optimization in Power Systems

Large scale, non-convex optimization problems arising in many complex networks such as the power system call for efficient and scalable distributed optimization algorithms. Existing distributed methods are usually iterative and require synchronization of all workers at each iteration, which is hard to scale and could result in the under-utilization of computation resources due to the heterogene...

متن کامل

Asynchronous Distributed ADMM for Large-Scale Optimization- Part I: Algorithm and Convergence Analysis

Aiming at solving large-scale learning problems, this paper studies distributed optimization methods based on the alternating direction method of multipliers (ADMM). By formulating the learning problem as a consensus problem, the ADMM can be used to solve the consensus problem in a fully parallel fashion over a computer network with a star topology. However, traditional synchronized computation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1412.6058  شماره 

صفحات  -

تاریخ انتشار 2014