Production of Phytotoxic Cationic α-Helical Antimicrobial Peptides in Plant Cells Using Inducible Promoters
نویسندگان
چکیده
Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes.
منابع مشابه
Biological properties of structurally related alpha-helical cationic antimicrobial peptides.
A series of alpha-helical cationic antimicrobial peptide variants with small amino acid changes was designed. Alterations in the charge, hydrophobicity, or length of the variant peptides did not improve the antimicrobial activity, and there was no statistically significant correlation between any of these factors and the MIC for Pseudomonas aeruginosa, Escherichia coli, or Salmonella typhimuriu...
متن کاملExpression and antimicrobial activity analysis of dermaseptin B1 recombinant peptides in tobacco transgenic plants
Recently, new molecular breeding and genetic engineering approaches have emerged to overcome the limitations of conventional breeding methods in generating disease-resistance transgenic plants. The use of antimicrobial peptides (AMPs) to produce transgenic plants resistant to a wide range of plant pathogens has achieved great success. Among huge number of AMPs, Dermaseptin B1 (DrsB1), an antimi...
متن کاملShort cationic antimicrobial peptides interact with ATP.
The mode of action of short, nonhelical antimicrobial peptides is still not well understood. Here we show that these peptides interact with ATP and directly inhibit the actions of certain ATP-dependent enzymes, such as firefly luciferase, DnaK, and DNA polymerase. α-Helical and planar or circular antimicrobial peptides did not show such interaction with ATP.
متن کاملInfluence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides
The effect of C-terminal amidation on the antimicrobial and hemolytic activities of antimicrobial peptides was studied using three cationic peptides which form amphiphilic α-helices when bound to membranes. The natural antimicrobial peptide PGLa, the designermade antibiotic MSI-103, and the cell-penetrating “model amphipathic peptide” (MAP) are all amidated in their original forms, and their bi...
متن کاملMimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides.
We have designed beta-amino acid oligomers that are helical, cationic, and amphiphilic with the intention of mimicking the biological activity of amphiphilic, cationic alpha-helical antimicrobial peptides found in nature (e.g., magainins). We have previously identified a 17-residue beta-peptide (called beta-17) with antibiotic activity similar to that of a magainin derivative against four bacte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014