Ionic mechanisms of burst firing in dissociated Purkinje neurons.
نویسندگان
چکیده
Cerebellar Purkinje neurons have intrinsic membrane properties that favor burst firing, seen not only during complex spikes elicited by climbing fiber input but also with direct electrical stimulation of cell bodies. We examined the ionic conductances that underlie all-or-none burst firing elicited in acutely dissociated mouse Purkinje neurons by short depolarizing current injections. Blocking voltage-dependent calcium entry by cadmium or replacement of external calcium by magnesium enhanced burst firing, but it was blocked by cobalt replacement of calcium, probably reflecting block of sodium channels. In voltage-clamp experiments, we used the burst waveform of each cell as a voltage command and used ionic substitutions and pharmacological manipulations to isolate tetrodotoxin (TTX)-sensitive sodium current, P-type and T-type calcium current, hyperpolarization-activated cation current (Ih), voltage-activated potassium current, large-conductance calcium-activated potassium current, and small-conductance calcium-activated potassium (SK) current. Measured near the middle of the first interspike interval, TTX-sensitive sodium current carried the largest inward current, and T-type calcium current was also substantial. Current through P-type channels was large immediately after a spike but decayed rapidly. These inward currents were opposed by substantial components of voltage-dependent and calcium-dependent potassium current. Termination of the burst is caused partly by decay of sodium current, together with a progressive buildup of SK current after the first interspike interval. Although burst firing depends on the net balance between multiple large currents flowing after a spike, it is surprisingly robust, probably reflecting complex interactions between the exact voltage waveform and voltage and calcium dependence of the various currents.
منابع مشابه
Power Spectral Density Analysis of Purkinje Cell Tonic and Burst Firing Patterns From a Rat Model of Ataxia and Riluzole Treated
Introduction: Purkinje Cell (PC) output displays a complex firing pattern consisting of high frequency sodium spikes and low frequency calcium spikes, and disruption in this firing behavior may contribute to cerebellar ataxia. Riluzole, neuroprotective agent, has been demonstrated to have neuroprotective effects in cerebellar ataxia. Here, the spectral analysis of PCs firing in control, 3-acety...
متن کاملRobustness of burst firing in dissociated purkinje neurons with acute or long-term reductions in sodium conductance.
Cerebellar Purkinje neurons often generate all-or-none burst firing in response to depolarizing stimuli. Voltage-clamp experiments using action potential waveforms show that burst firing depends on small net inward currents that flow after spikes and reflect the net balance between multiple large currents. Given this, burst firing is surprisingly robust in the face of changes in the magnitude o...
متن کاملIonic mechanisms underlying burst firing of layer III sensorimotor cortical neurons of the cat: an in vitro slice study.
We examined the ionic mechanisms underlying burst firing in layer III neurons from cat sensorimotor cortex by intracellular recording in a brain slice. Regular spiking was observed in 77.4% of 137 neurons in response to constant intracellular current pulses of 0.5- to 1-s duration. The rest of the neurons showed burst firing. An initial burst followed by regular-spike firing was seen in 71.0% o...
متن کاملInteraction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons.
Purkinje neurons spontaneously generate action potentials in the absence of synaptic drive and thereby exert a tonic, yet plastic, input to their target cells in the deep cerebellar nuclei. Purkinje neurons express two ionic currents with biophysical properties that are specialized for high-frequency firing: resurgent sodium currents and potassium currents mediated by Kv3.3. How these ionic cur...
متن کاملMathematical Model of Bursting in Dissociated Purkinje Neurons
In vitro, Purkinje cell behaviour is sometimes studied in a dissociated soma preparation in which the dendritic projection has been cleaved. A fraction of these dissociated somas spontaneously burst. The mechanism of this bursting is incompletely understood. We have constructed a biophysical Purkinje soma model, guided and constrained by experimental reports in the literature, that can replicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 29 شماره
صفحات -
تاریخ انتشار 2003