Sine‐wave electrical stimulation initiates a voltage‐gated potassium channel‐dependent soft tissue response characterized by induction of hemocyte recruitment and collagen deposition
نویسندگان
چکیده
Soft tissue repair is a complex process that requires specific communication between multiple cell types to orchestrate effective restoration of physiological functions. Macrophages play a critical role in this wound healing process beginning at the onset of tissue injury. Understanding the signaling mechanisms involved in macrophage recruitment to the wound site is an essential step for developing more effective clinical therapies. Macrophages are known to respond to electrical fields, but the underlying cellular mechanisms mediating this response is unknown. This study demonstrated that low-amplitude sine-wave electrical stimulation (ES) initiates a soft tissue response in the absence of injury in Procambarus clarkii This cellular response was characterized by recruitment of macrophage-like hemocytes to the stimulation site indicated by increased hemocyte density at the site. ES also increased tissue collagen deposition compared to sham treatment (P < 0.05). Voltage-gated potassium (KV) channel inhibition with either 4-aminopyridine or astemizole decreased both hemocyte recruitment and collagen deposition compared to saline infusion (P < 0.05), whereas inhibition of calcium-permeable channels with ruthenium red did not affect either response to ES Thus, macrophage-like hemocytes in P. clarkii elicit a wound-like response to exogenous ES and this is accompanied by collagen deposition. This response is mediated by KV channels but independent of Ca(2+) channels. We propose a significant role for KV channels that extends beyond facilitating Ca(2+) transport via regulation of cellular membrane potentials during ES of soft tissue.
منابع مشابه
Differential effect of brief electrical stimulation on voltage-gated potassium channels.
Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of t...
متن کاملEvolutionary Analysis of Biological Excitability
Excitability is an attribute of life, and is a driving force in the descent of complexity. Cellular electrical activity as realized by membrane proteins that act as either channels or transporters is the basis of excitability. Electrical signaling is mediated by a wave of action potentials, which consist of synchronous redistribution of ionic gradients down ion channels. Ion channels select for...
متن کاملDesign of Novel Drugs (P3TZ, H2P3TZ, M2P3TZ, H4P3TZ and M4P3TZ) Based on Zonisamide for Autism Treatment by Binding to Potassium Voltage-gated Channel Subfamily D Member 2 (Kv4.2)
The present research article relates to the discovery of the novel drugs based on Zonisamide to treatment of autism disease. In first step, the electronic properties, reactivity and stability of the said compound are discussed. To attain these properties, the said molecular structure is optimized using B3LYP/6-311++G(d,p) level of theory at room temperature. The frontier molecular orbitals (FMO...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016