Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space

نویسندگان

  • Yingying FAN
  • Jinchi LV
چکیده

High-dimensional data analysis has motivated a spectrum of regularization methods for variable selection and sparse modeling, with two popular methods being convex and concave ones. A long debate has taken place on whether one class dominates the other, an important question both in theory and to practitioners. In this article, we characterize the asymptotic equivalence of regularization methods, with general penalty functions, in a thresholded parameter space under the generalized linear model setting, where the dimensionality can grow exponentially with the sample size. To assess their performance, we establish the oracle inequalities—as in Bickel, Ritov, and Tsybakov (2009)—of the global minimizer for these methods under various prediction and variable selection losses. These results reveal an interesting phase transition phenomenon. For polynomially growing dimensionality, the L1-regularization method of Lasso and concave methods are asymptotically equivalent, having the same convergence rates in the oracle inequalities. For exponentially growing dimensionality, concave methods are asymptotically equivalent but have faster convergence rates than the Lasso. We also establish a stronger property of the oracle risk inequalities of the regularization methods, as well as the sampling properties of computable solutions. Our new theoretical results are illustrated and justified by simulation and real data examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method

A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

High dimensional thresholded regression and shrinkage effect

High dimensional sparse modelling via regularization provides a powerful tool for analysing large-scale data sets and obtaining meaningful interpretable models.The use of nonconvex penalty functions shows advantage in selecting important features in high dimensions, but the global optimality of such methods still demands more understanding.We consider sparse regression with a hard thresholding ...

متن کامل

Moving horizon observer with regularisation for detectable systems without persistence of excitation

A constrained moving horizon observer is developed for nonlinear discrete-time systems. The algorithm is proved to converge exponentially under a detectability assumption and the data being exciting at all time. However, in many practical estimation problems, such as combined state and parameter estimation, the data may not be exciting for every period of time. The algorithm therefore has regul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013