Missing at Random , Likelihood Ignorability and Model Completeness
نویسنده
چکیده
This paper provides further insight into the key concept of missing at random (MAR) in incomplete data analysis. Following the usual selection modelling approach we envisage two models with separable parameters: a model for the response of interest and a model for the missing data mechanism (MDM). If the response model is given by a complete density family, then frequentist inference from the likelihood function ignoring the MDM is valid if and only if the MDM is MAR. This necessary and sufficient condition also holds more generally for models for coarse data, such as censoring. Examples are given to show the necessity of the completeness of the underlying model for this equivalence to hold.
منابع مشابه
Ignorability for general longitudinal data
Likelihood factors that can be disregarded for inference are termed ignorable. We demonstrate that close ties exist between ignorability and identification of causal effects by covariate adjustment. A graphical condition, stability, plays a role analogous to that of missingness at random, but is applicable to general longitudinal data. Our formulation of ignorability does not depend on any noti...
متن کاملPseudo-likelihood Estimation for Incomplete Data
In statistical practice, incomplete measurement sequences are the rule rather than the exception. Fortunately, in a large variety of settings, the stochastic mechanism governing the incompleteness can be ignored without hampering inferences about the measurement process. While ignorability only requires the relatively general missing at random assumption for likelihood and Bayesian inferences, ...
متن کاملIgnorability for categorical data
We study the problem of ignorability in likelihood-based inference from incomplete categorical data. Two versions of the coarsened at random assumption (car) are distinguished, their compatibility with the parameter distinctness assumption is investigated, and several conditions for ignorability that do not require an extra parameter distinctness assumption are established. It is shown that car...
متن کاملSelective ignorability assumptions in causal inference.
Most attempts at causal inference in observational studies are based on assumptions that treatment assignment is ignorable. Such assumptions are usually made casually, largely because they justify the use of available statistical methods and not because they are truly believed. It will often be the case that it is plausible that conditional independence holds at least approximately for a subset...
متن کاملNon-Response in Dynamic Panel Data Models
This paper stresses the links that exist between concepts that are used in the theory of model reduction and concepts that arise in the missing data literature. This connection motivates the extension of the missing at random (MAR) and the missing completely at random (MCAR) concepts from a static setting, as introduced by Rubin (1976), to the case of dynamic panel data models. Using this exten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004