Rare events and scale-invariant dynamics of perturbations in delayed chaotic systems.

نویسندگان

  • Alejandro D Sánchez
  • Juan M López
  • Miguel A Rodríguez
  • Manuel A Matías
چکیده

We study the dynamics of perturbations in time-delay dynamical systems. Using a suitable space-time coordinate transformation, we find that the time evolution of the linearized perturbations (Lyapunov vector) can be described by the linear Zhang surface growth model [J. Phys. (France) 51, 2129 (1990)]], which is known to describe surface roughening driven by power-law distributed noise. As a consequence, Lyapunov vector dynamics is dominated by rare random events that lead to non-Gaussian fluctuations and multiscaling properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stabilization of chaotic systems via fuzzy time-delayed controller approac

In this paper, we investigate the stabilization of unstable periodic orbits of continuous time chaotic systems usingfuzzy time-delayed controllers. For this aim, we present a control method that can achieve stabilization of an unstableperiodic orbit (UPO) without any knowledge of the system model. Our proposal is attained progressively. First, wecombine the input-to-state linearizing controller...

متن کامل

Dynamics of perturbations in disordered chaotic systems.

We study the time evolution of perturbations in spatially extended chaotic systems in the presence of quenched disorder. We find that initially random perturbations tend to exponentially localize in space around static pinning centers that are selected by the particular configuration of disorder. The spatiotemporal behavior of typical perturbations deltau(x,t) is analyzed in terms of the Hopf-C...

متن کامل

Chaotic dynamics and synchronization of fractional order PMSM ‎system

‎In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

Output Consensus Control of Nonlinear Non-minimum Phase Multi-agent Systems Using Output Redefinition Method

This paper concerns the problem of output consensus in nonlinear non-minimum phase systems. The main contribution of the paper is to guarantee achieving consensus in the presence of unstable zero dynamics. To achieve this goal, an output redefinition method is proposed. The new outputs of agents are functions of original outputs and internal states and defined such that the dynamics of agents a...

متن کامل

Complexity in Hamiltonian-driven dissipative chaotic dynamical systems.

The existence of symmetry in chaotic dynamical systems often leads to one or several low-dimensional invariant subspaces in the phase space. We demonstrate that complex behaviors can arise when the dynamics in the invariant subspace is Hamiltonian but the full system is dissipative. In particular, an infinite number of distinct attractors can coexist. These attractors can be quasiperiodic, stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 92 20  شماره 

صفحات  -

تاریخ انتشار 2004