Multifault Diagnosis for Rolling Element Bearings Based on Intrinsic Mode Permutation Entropy and Ensemble Optimal Extreme Learning Machine

نویسندگان

  • Jianzhong Zhou
  • Jian Xiao
  • Han Xiao
  • Weibo Zhang
  • Wenlong Zhu
  • Chaoshun Li
چکیده

This paper presented a novel procedure based on the ensemble empirical mode decomposition and extreme learning machine. Firstly, EEMD was utilized to decompose the vibration signals into a number of IMFs adaptively and the permutation entropy of each IMF was calculated to generate the fault feature matrix. Secondly, a new extreme learning machine was proposed by combining ensemble extreme learningmachine and the evolutionary extreme learningmachine which used an artificial bee colony algorithm to optimize the input weights and hidden bias. The proposed diagnosis algorithm was applied on the three rolling bearing fault diagnosis experiments.The numerical experimental results demonstrated that the proposedmethod had an improved generalization performance than traditional extreme and other variants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rolling Bearing Fault Diagnosis Method Based on Variational Mode Decomposition and an Improved Kernel Extreme Learning Machine

Rolling bearings are key components of rotary machines. To ensure early effective fault diagnosis for bearings, a new rolling bearing fault diagnosis method based on variational mode decomposition (VMD) and an improved kernel extreme learning machine (KELM) is proposed in this paper. A fault signal is decomposed via VMD to obtain the intrinsic mode function (IMF) components, and the approximate...

متن کامل

Ball Bearing Fault Diagnosis Using Supervised and Unsupervised Machine Learning Methods

This paper deals with the approach of using multiscale permutation entropy as a tool for feature selection for fault diagnosis in ball bearings. The coefficients obtained from the wavelet transformation of the vibration signals of the bearings are used for the calculation of statistical parameters. Based on the minimum multiscale permutation entropy criteria, the best scale is selected and stat...

متن کامل

Fault Diagnosis of Rolling Bearings Based on EWT and KDEC

Abstract: This study proposes a novel fault diagnosis method that is based on empirical wavelet transform (EWT) and kernel density estimation classifier (KDEC), which can well diagnose fault type of the rolling element bearings. With the proposed fault diagnosis method, the vibration signal of rolling element bearing was firstly decomposed into a series of F modes by EWT, and the root mean squa...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014