On The Equivalence of Projections In Relative $\alpha$-Entropy and R\'enyi Divergence

نویسندگان

  • P. N. Karthik
  • Rajesh Sundaresan
چکیده

The aim of this work is to establish that two recently published projection theorems, one dealing with a parametric generalization of relative entropy and another dealing with Rényi divergence, are equivalent under a correspondence on the space of probability measures. Further, we demonstrate that the associated “Pythagorean” theorems are equivalent under this correspondence. Finally, we apply Eguchi’s method of obtaining Riemannian metrics from general divergence functions to show that the geometry arising from the above divergences are equivalent under the aforementioned correspondence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observational Modeling of the Kolmogorov-Sinai Entropy

In this paper, Kolmogorov-Sinai entropy is studied using mathematical modeling of an observer $ Theta $. The relative entropy of a sub-$ sigma_Theta $-algebra having finite atoms is defined and then   the ergodic properties of relative  semi-dynamical systems are investigated.  Also,  a relative version of Kolmogorov-Sinai theorem  is given. Finally, it is proved  that the relative entropy of a...

متن کامل

Equivalence of Entropy Regularization and Relative-Entropy Proximal Method

We consider two entropy-based interior point methods that solve LP relaxations of MAP estimation in graphical models: (1) an entropy-regularization method and (2) a relative-entropy proximal method. Using the fact that relative-entropy is the Bregman distance induced by entropy, we show that the two approaches are actually equivalent. The purpose of this note is to show one connection between t...

متن کامل

A research on classification performance of fuzzy classifiers based on fuzzy set theory

Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classi...

متن کامل

FUZZY SUBGROUPS AND CERTAIN EQUIVALENCE RELATIONS

In this paper, we study an equivalence relation on the set of fuzzysubgroups of an arbitrary group G and give four equivalent conditions each ofwhich characterizes this relation. We demonstrate that with this equivalencerelation each equivalence class constitutes a lattice under the ordering of fuzzy setinclusion. Moreover, we study the behavior of these equivalence classes under theaction of a...

متن کامل

Minimization Problems Based on a Parametric Family of Relative Entropies I: Forward Projection

Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative α-entropies (denoted Iα), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017