Isomonodromy for the Degenerate Fifth Painlevé Equation

نویسنده

  • Primitivo B. ACOSTA-HUMÁNEZ
چکیده

This is a sequel to papers by the last two authors making the Riemann–Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann–Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto–Painlevé space is identified with a moduli space of connections. Using MAPLE computations, one obtains formulas for the degenerate fifth Painlevé equation, for the Bäcklund transformations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an Isomonodromy Deformation Equation without the Painlevé Property

Abstract. We show that the fourth-order nonlinear ODE which controls the pole dynamics in the general solution of equation P 2 I compatible with the KdV equation exhibits two remarkable properties: (1) it governs the isomonodromy deformations of a 2× 2 matrix linear ODE with polynomial coefficients, and (2) it does not possess the Painlevé property. We also study the properties of the Riemann–H...

متن کامل

Special Functions of the Isomonodromy Type, Rational Transformations of Spectral Parameter, and Algebraic Solutions of the Sixth Painlevé Equation

We discuss relations which exist between analytic functions belonging to the recently introduced class of special functions of the isomonodromy type (SFITs). These relations can be obtained by application of some simple transformations to auxiliary ODEs with respect to a spectral parameter which associated with each SFIT. We consider two applications of rational transformations of the spectral ...

متن کامل

An Isomonodromy Interpretation of the Hypergeometric Solution of the Elliptic Painlevé Equation (and Generalizations)

We construct a family of second-order linear difference equations parametrized by the hypergeometric solution of the elliptic Painlevé equation (or higher-order analogues), and admitting a large family of monodromy-preserving deformations. The solutions are certain semiclassical biorthogonal functions (and their Cauchy transforms), biorthogonal with respect to higher-order analogues of Spiridon...

متن کامل

3 Connection Formulae for Asymptotics of Solutions of the Degenerate Third Painlevé Equation . I

The degenerate third Painlevé equation, u= (u ) u −u′ τ + τ (−8εu2+2ab)+b2 u , where ε, b∈R, and a∈C, and the associated tau-function are studied via the Isomonodromy Deformation Method. Connection formulae for asymptotics of the general as τ→±0 and ±i0 solution and general regular as τ→±∞ and ±i∞ solution are obtained. 2000 Mathematics Subject Classification. 33E17, 34M40, 34M50, 34M55, 34M60 ...

متن کامل

Rational Solutions of the Painlevé-II Equation Revisited

The rational solutions of the Painlevé-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann–Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017