Refinements of Pinsker's inequality

نویسندگان

  • Alexei A. Fedotov
  • Peter Harremoës
  • Flemming Topsøe
چکیده

Let V and D denote, respectively, total variation and divergence. We study lower bounds of D with V fixed. The theoretically best (i.e. largest) lower bound determines a function L = L(V ), Vajda’s tight lower bound, cf. Vajda, [?]. The main result is an exact parametrization of L. This leads to Taylor polynomials which are lower bounds for L, and thereby extensions of the classical Pinsker inequality which has numerous applications, cf.Pinsker, [?] and followers. Keywords— Divergence, total variation, Pinsker’s inequality, Vajda’s tight lower bound.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bernstein's polynomials for convex functions and related results

In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of  Hermite-Hadamard inequality for convex functions.

متن کامل

Inequalities for the L1 Deviation of the Empirical Distribution

We derive bounds on the probability that the L1 distance between the empirical distribution of a sequence of independent identically distributed random variables and the true distribution is more than a specified value. We also derive a generalization of Pinsker’s inequality relating the L1 distance to the divergence.

متن کامل

A note on the Young type inequalities

In this   paper,  we   present  some  refinements  of the   famous Young  type  inequality.   As  application  of   our   result, we  obtain  some  matrix inequalities   for   the  Hilbert-Schmidt norm  and   the  trace   norm. The results    obtained   in  this  paper  can  be   viewed   as  refinement  of  the   derived  results   by  H.  Kai  [Young  type  inequalities  for matrices,  J.  Ea...

متن کامل

On Pinsker's and Vajda's Type Inequalities for Csiszár's f-Divergences

We study conditions on f under which an f -divergence Df will satisfy Df ≥ cfV 2 or Df ≥ c2,fV +c4,fV , where V denotes variational distance and the coefficients cf , c2,f and c4,f are best possible. As a consequence, we obtain lower bounds in terms of V for many well known distance and divergence measures. For instance, let D(α)(P,Q) = [α(α− 1)][ ∫ qp dμ− 1] and Iα(P,Q) = (α−1)−1 log[ ∫ pq dμ]...

متن کامل

On Pinsker's Type Inequalities and Csiszar's f-divergences. Part I: Second and Fourth-Order Inequalities

We study conditions on f under which an f -divergence Df will satisfy Df ≥ cfV 2 or Df ≥ c2,fV 2 + c4,fV 4, where V denotes variational distance and the coefficients cf , c2,f and c4,f are best possible. As a consequence, we obtain lower bounds in terms of V for many well known distance and divergence measures. For instance, let D(α)(P,Q) = [α(α−1)]−1[∫ qαp1−α dμ−1] and Iα(P,Q) = (α−1)−1 log[ ∫...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2003