Inorganic Arsenite Potentiates Vasoconstriction through Calcium Sensitization in Vascular Smooth Muscle
نویسندگان
چکیده
Chronic exposure to arsenic is well known as the cause of cardiovascular diseases such as hypertension. To investigate the effect of arsenic on blood vessels, we examined whether arsenic affected the contraction of aortic rings in an isolated organ bath system. Treatment with arsenite, a trivalent inorganic species, increased vasoconstriction induced by phenylephrine or serotonin in a concentration-dependent manner. Among the arsenic species tested--arsenite, pentavalent inorganic species (arsenate), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV)--arsenite was the most potent. Similar effects were also observed in aortic rings without endothelium, suggesting that vascular smooth muscle plays a key role in enhancing vasoconstriction induced by arsenite. This hypercontraction by arsenite was well correlated with the extent of myosin light chain (MLC) phosphorylation stimulated by phenylephrine. Direct Ca2+ measurement using fura-2 dye in aortic strips revealed that arsenite enhanced vasoconstriction induced by high K+ without concomitant increase in intracellular Ca2+ elevation, suggesting that, rather than direct Ca2+ elevation, Ca2+ sensitization may be a major contributor to the enhanced vasoconstriction by arsenite. Consistent with these in vitro results, 2-hr pretreatment of 1.0 mg/kg intravenous arsenite augmented phenylephrine-induced blood pressure increase in conscious rats. All these results suggest that arsenite increases agonist-induced vasoconstriction mediated by MLC phosphorylation in smooth muscles and that calcium sensitization is one of the key mechanisms for the hypercontraction induced by arsenite in blood vessels.
منابع مشابه
Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia.
Recent evidence supports a prominent role for Rho kinase (ROK)-mediated pulmonary vasoconstriction in the development and maintenance of chronic hypoxia (CH)-induced pulmonary hypertension. Endothelin (ET)-1 contributes to the pulmonary hypertensive response to CH, and recent studies by our laboratory and others indicate that pulmonary vascular reactivity following CH is largely independent of ...
متن کاملPostischemic reperfusion causes smooth muscle calcium sensitization and vasoconstriction of parenchymal arterioles.
BACKGROUND AND PURPOSE Parenchymal arterioles (PAs) are high-resistance vessels in the brain that connect pial vessels to the microcirculation. We previously showed that PAs have increased vasoconstriction after ischemia and reperfusion that could increase perfusion deficit. Here, we investigated underlying mechanisms by which early postischemic reperfusion causes increased vasoconstriction of ...
متن کاملModulatory Effect of 2-(4-Hydroxyphenyl)amino-1,4-naphthoquinone on Endothelial Vasodilation in Rat Aorta
The vascular endothelium plays an essential role in the control of the blood flow. Pharmacological agents like quinone (menadione) at various doses modulate this process in a variety of ways. In this study, Q7, a 2-phenylamino-1,4-naphthoquinone derivative, significantly increased oxidative stress and induced vascular dysfunction at concentrations that were not cytotoxic to endothelial or vascu...
متن کاملThiazide-like diuretics attenuate agonist-induced vasoconstriction by calcium desensitization linked to Rho kinase.
Lowering blood pressure using thiazide-like diuretics, including chlorthalidone and hydrochlorothiazide, has been proven to be effective in clinical studies. However, the mechanisms by which thiazide-like diuretics lower blood pressure are still poorly understood. To evaluate whether thiazide-like diuretics cause calcium desensitization in smooth muscle cells, we measured their effects on agoni...
متن کاملDexmedetomidine-Induced Contraction Involves CPI-17 Phosphorylation in Isolated Rat Aortas
Dexmedetomidine, a highly selective α-2 adrenoceptor agonist, produces vasoconstriction, which leads to transiently increased blood pressure. The goal of this study was to investigate specific protein kinases and the associated cellular signal pathways responsible for the increased calcium sensitization induced by dexmedetomidine in isolated rat aortas, with a particular focus on phosphorylatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 113 شماره
صفحات -
تاریخ انتشار 2005