How Slow Is Slow? Sfa Detects Signals Slower than the Driving Force

نویسندگان

  • Wolfgang Konen
  • Patrick Koch
چکیده

Slow feature analysis (SFA) is a bioinspired method for extracting slowly varying driving forces from quickly varying nonstationary time series. We show here that it is possible for SFA to detect a component which is even slower than the driving force itself (e.g. the envelope of a modulated sine wave). It depends on circumstances like the embedding dimension, the time series predictability, or the base frequency, whether the driving force itself or a slower subcomponent is detected. Interestingly, we observe a swift phase transition from one regime to another and it is the objective of this work to quantify the influence of various parameters on this phase transition. We conclude that what is perceived as slow by SFA varies and that a more or less fast switching from one regime to another occurs, perhaps showing some similarity to human perception.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How slow is slow? SFA detects signals that are slower than the driving force

Slow feature analysis (SFA) is a method for extracting slowly varying driving forces from quickly varying nonstationary time series. We show here that it is possible for SFA to detect a component which is even slower than the driving force itself (e.g. the envelope of a modulated sine wave). It is shown that it depends on circumstances like the embedding dimension, the time series predictabilit...

متن کامل

The slowness principle: SFA can detect different slow components in non-stationary time series

Slow feature analysis (SFA) is a bioinspired method for extracting slowly varying driving forces from quickly varying non-stationary time series. We show here that it is possible for SFA to detect a component which is even slower than the driving force itself (e.g., the envelope of a modulated sine wave). It depends on circumstances like the embedding dimension, the time series predictability, ...

متن کامل

Estimating Driving Forces of Nonstationary Time Series with Slow Feature Analysis

Slow feature analysis (SFA) is a new technique for extracting slowly varying features from a quickly varying signal. It is shown here that SFA can be applied to nonstationary time series to estimate a single underlying driving force with high accuracy up to a constant offset and a factor. Examples with a tent map and a logistic map illustrate the performance.

متن کامل

Slow Feature Analysis for Recognizing Prisoner’s Activities to Assist Jail Authorities

-Slow Feature Analysis (SFA) has been established as a robust and versatile technique from the neurosciences to learn slowly varying functions from quickly changing signals. SFA framework is introduced to the problem of recognizing prisoner’s actions by incorporating the supervised information with the original unsupervised SFA learning. Firstly, large amount of cuboids are collected in the mot...

متن کامل

Posture Recognition Based on Slow Feature Analysis

Basic postures such as sit, stand and lie are ubiquitous in human interaction. In order to build robots that aid and support humans in their daily life, we need to understand how posture categories can be learned and recognized. This paper presents an unsupervised learning approach to posture recognition for a biped humanoid robot. The approach is based on Slow Feature Analysis (SFA), a biologi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010