Tunable and polarization-selective THz range transmission properties of metallic rectangular array with a varying hole channel shape.

نویسندگان

  • Wei Wang
  • Yalin Lu
  • R J Knize
  • Kitt Reinhardt
  • Shaochen Chen
چکیده

This paper proposes a metallic hole array of a rectangular converging-diverging channel (RCDC) shape with extraordinary transmission. We use a three-dimensional (3D) finite element method to analyze the transmission characteristics of two-dimensional metallic hole arrays (2D-MHA) with RCDC. For a straight channel MHA, when the aperture size is reduced, the transmission peaks have a blue-shift. The same result is observed for a smaller gap throat for the RCDC structure. For the rectangular holes with a high length-width ratio, a similar blue-shift in the transmission peaks as well as a narrower full width at half maximum (FWHM) are observed. The asymmetry from the rectangular shape gives this structure high selectivity for light with different polarizations. Furthermore, the RCDC shape gives extra degrees of geometrical variables to 2D-MHA for tuning the location of the transmission peak and the FWHM. The tunable transmission property of this structure shows promise for applications in tunable filters, photonic circuits, and biosensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunable transmission at 100 THz through a metallic hole array with a varying hole channel shape.

Extraordinary optical transmission spectrum for a two-dimensional metallic hole array (2D-MHA) changes with the hole channel shape. In this paper a new converging-diverging channel (CDC) shape is proposed. A three-dimensional (3D) finite element method is utilized to analyze the transmission characteristics of the 2D-MHA with CDC. The transmission peaks are blue-shifted when the gap at the thro...

متن کامل

Tuning the extraordinary transmission in a metallic/dielectric CDC hole array by changing the temperature.

Tunable extraordinary transmission via changing temperature of a porous metallic layer on top of a thin layer of dielectric strontium titanate (STO) was studied. The metallic layer has a through-hole array and each hole has a circular converging-diverging channel (CDC) shape, which induces the excitation of surface plasmon polaritons (SPPs) and then results in a controllable extraordinary optic...

متن کامل

Polarization properties of subwavelength hole arrays consisting of rectangular holes

Influence of hole shape on extraordinary optical transmission was investigated using hole arrays consisting of rectangular holes with different aspect ratio. It was found that the transmission could be tuned continuously by rotating the hole array. Further more, a phase was generated in this process, and linear polarization states could be changed to elliptical polarization states. This phase w...

متن کامل

Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal.

We demonstrate frequency tuning of enhanced THz radiation transmitted through a two-dimensional metallic hole array (2D-MHA) by controlling the index of refraction of the medium filling the holes and adjacent to the 2D-MHA on one side. The medium is a nematic liquid crystal (NLC) and its index of refraction is varied using magnetically controlled birefringence of the NLC. With the NLC, the peak...

متن کامل

Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array

We demonstrate extraordinary THz transmission of an array of subwavelength apertures patterned on ultrathin highly doped silicon by reactive ion etching. The zero-order transmission spectra exhibit well-defined maxima and minima which are attributed to the excitation of surface-plasmon polaritons and Wood’s anomaly. The transmission anisotropy is investigated with respect to the orientation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 2009