Convex Envelopes for Low Rank Approximation

نویسندگان

  • Viktor Larsson
  • Carl Olsson
چکیده

In this paper we consider the classical problem of finding a low rank approximation of a given matrix. In a least squares sense a closed form solution is available via factorization. However, with additional constraints, or in the presence of missing data, the problem becomes much more difficult. In this paper we show how to efficiently compute the convex envelopes of a class of rank minimization formulations. This opens up the possibility of adding additional convex constraints and functions to the minimization problem resulting in strong convex relaxations. We evaluate the framework on both real and synthetic data sets and demonstrate state-of-the-art performance. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Convergence in the Approximation of Rank-one Convex Envelopes

A linearly convergent iterative algorithm that approximates the rank-1 convex envelope f of a given function f : Rn×m → R, i.e. the largest function below f which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington. Mathematics Subject Classification. 65K10, 74G15, 74G65, 74N99. Received: May 27...

متن کامل

A numerical iterative scheme for computing finite order rank-one convex envelopes

Abstract. It is known that the i-th order laminated microstructures can be resolved by the k-th order rank-one convex envelopes with k ≥ i. So the requirement of establishing an efficient numerical scheme for the computation of the finite order rank-one convex envelopes arises. In this paper, we develop an iterative scheme for such a purpose. The 1-st order rank-one convex envelope R1f is appro...

متن کامل

Convex envelopes of complexity controlling penalties: the case against premature envelopment

Convex envelopes of the cardinality and rank function, l1 and nuclear norm, have gained immense popularity due to their sparsity inducing properties. This has given rise to a natural approach to building objectives with sparse optima whereby such convex penalties are added to another objective. Such a heuristic approach to objective building does not always work. For example, addition of an L1 ...

متن کامل

Low-rank optimization with convex constraints

The problem of low-rank approximation with convex constraints, which often appears in data analysis, image compression and model order reduction, is considered. Given a data matrix, the objective is to find an approximation of desired lower rank that fulfills the convex constraints and minimizes the distance to the data matrix in the Frobenius-norm. The problem of matrix completion can be seen ...

متن کامل

Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage

This paper concerns a fundamental class of convex matrix optimization problems. It presents the first algorithm that uses optimal storage and provably computes a lowrank approximation of a solution. In particular, when all solutions have low rank, the algorithm converges to a solution. This algorithm, SketchyCGM, modifies a standard convex optimization scheme, the conditional gradient method, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014