A new class of repression modules is critical for heme regulation of the yeast transcriptional activator Hap1.

نویسندگان

  • A Hach
  • T Hon
  • L Zhang
چکیده

Heme plays key regulatory roles in numerous molecular and cellular processes for systems that sense or use oxygen. In the yeast Saccharomyces cerevisiae, oxygen sensing and heme signaling are mediated by heme activator protein 1 (Hap1). Hap1 contains seven heme-responsive motifs (HRMs): six are clustered in the heme domain, and a seventh is near the activation domain. To determine the functional role of HRMs and to define which parts of Hap1 mediate heme regulation, we carried out a systematic analysis of Hap1 mutants with various regions deleted or mutated. Strikingly, the data show that HRM1 to -6, located in the previously designated Hap1 heme domain, have little impact on heme regulation. All seven HRMs are dispensable for Hap1 repression in the absence of heme, but HRM7 is required for Hap1 activation by heme. More importantly, we show that a novel class of repression modules-RPM1, encompassing residues 245 to 278; RPM2, encompassing residues 1061 to 1185; and RPM3, encompassing residues 203 to 244-is critical for Hap1 repression in the absence of heme. Biochemical analysis indicates that RPMs mediate Hap1 repression, at least partly, by the formation of a previously identified higher-order complex termed the high-molecular-weight complex (HMC), while HRMs mediate heme activation by permitting heme binding and the disassembly of the HMC. These findings provide significant new insights into the molecular interactions critical for Hap1 repression in the absence of heme and Hap1 activation by heme.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The heme activator protein Hap1 represses transcription by a heme-independent mechanism in Saccharomyces cerevisiae.

The yeast heme activator protein Hap1 binds to DNA and activates transcription of genes encoding functions required for respiration and for controlling oxidative damage, in response to heme. Hap1 contains a DNA-binding domain with a C6 zinc cluster motif, a coiled-coil dimerization element, typical of the members of the yeast Gal4 family, and an acidic activation domain. The regulation of Hap1 ...

متن کامل

Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor.

Changes in oxygen levels cause widespread changes in gene expression in organisms ranging from bacteria to humans. In Saccharomyces cerevisiae, this response is mediated in part by Hap1, originally identified as a heme-dependent transcriptional activator that functions during aerobic growth. We show here that Hap1 also plays a significant and direct role under hypoxic conditions, not as an acti...

متن کامل

The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme.

In Saccharomyces cerevisiae, heme directly mediates the effects of oxygen on transcription through the heme activator protein Hap1. In the absence of heme, Hap1 is bound by at least four cellular proteins, including Hsp90 and Ydj1, forming a higher-order complex, termed HMC, and its activity is repressed. Here we purified the HMC and showed by mass spectrometry that two previously unidentified ...

متن کامل

Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae.

The ergosterol biosynthetic pathway is a specific branch of the mevalonate pathway. Since the cells requirement for sterols is greater than for isoprenoids, sterol biosynthesis must be regulated independently of isoprenoid biosynthesis. In this study we explored the transcriptional regulation of squalene synthase (ERG9) in Saccharomyces cerevisiae, the first enzyme dedicated to the synthesis of...

متن کامل

Regulation of gene expression by oxygen in Saccharomyces cerevisiae.

The oxygen regulation of two broad categories of yeast genes is discussed in this review. The first is made up of genes regulated by heme, and the second is made up of genes whose regulation is heme independent. Heme-regulated genes fall into two classes: heme-activated and heme-repressed genes. Activation is achieved through one of two transcriptional activators, the heme-dependent HAP1 protei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 1999