Diffusion of calcium in biological tissues and accompanying mechano-chemical effects
نویسندگان
چکیده
In this paper we consider the coupling between chemical and mechanical effects accompanying the diffusion of calcium, either in biological tissues or in a single long cell. The tissue is treated either as a 3-D, or as a quasi-2-D thin layer, of viscoelastic medium, whereas the cell is represented as a thin long cylinder. In particular, the influence of viscosity on the properties of calcium travelling waves is studied. In principle, we explore here the simplest model of calcium diffusion which is based on an effective diffusion coefficient, thus neglecting the details of the role played by buffers. The mechano-chemical coupling in the model is realized by the presence of a traction tensor, in addition to the viscoelastic stress tensor in the mechanical equations, and the strain tensor in the source term of the calcium diffusion equation, as proposed in [1–4]. Our aim is to provide a simple and effective theory, which can be useful in studying various effects influencing propagation of calcium waves. Since in the absence of viscosity the whole mechano-chemical system for calcium and buffers is easily reduced to the “chemical one”, i.e. it consists only of reaction diffusion equations, therefore we decided to perform expansion with respect to the viscosity. Treating, thus, viscous forces as a perturbation, we reduce the problem in each case to a single reaction diffusion equation for the calcium concentration. In this way we avoid the question of the existence of travelling wave solutions as for the so obtained models, their existence follows simply from already known theorems [5–9].
منابع مشابه
Calcium Phosphate Formation from Sea Urchin - (brissus Latecarinatus) via Modified Mechano-chemical (ultrasonic) Conversion Method
R. Samur, Marmara University, Istanbul, Turkey; L. S. Özyegin, Marmara University, Istanbul; D. Ağaoğulları, Istanbul Technical University, Istanbul; F. N. Oktar, Marmara University, Istanbul; S. Agathopoulos, Ioannina University, Greece; C. Kalkandelen, Istanbul University, Istanbul; İ. Duman, Istanbul Technical University, Istanbul; B. Ben-Nissan, The University of Technology, Sydney, Austral...
متن کاملIntroducing an Optimized Method for Obtaining X-ray Diffraction Patterns of Biological Tissues
Introduction Individual X-Ray diffraction patterns of biological tissues are obtained via interference of coherent scattering with their electrons. Many scientists have distinguished normal and cancerous breast tissue, bone density, and urinary stone types using the X-Ray diffraction patterns resulting from coherent scattering. The goal of this study was to introduce an optimized method for obt...
متن کاملSoybean Oil Transesterification Reactions in the Presence of Mussel Shell: Pseudo-First Order Kinetics
Calcium oxide is one of the appropriate catalysts for biodiesel production. In this study, cheap and compatible with environment catalyst has been used. Mussel shell of Persian Gulf coast is one of the sources of calcium carbonate that is converted to calcium oxide at calcination temperature up to 950°C. Transesterification reaction was carried out at optimum condition of our previous study...
متن کاملEffects of Aluminum Incorporation in Tobermorite Structure on Chloride Diffusion: A Molecular Dynamics Simulation Study
In this paper, the effects of different aluminum to silicon ratios in silicate chains of calcium silicate hydrates (C-S-H) are evaluated on the diffusion coefficient of chloride ions by molecular dynamics method. Tobermorite is a crystalline phase that is used for studying C-S-H properties in nano scale, because of its analogous chemical composition to C-S-H. Aluminum incorporation in C-S-H and...
متن کاملThe Study of Variation of Photon Intensity Inside Biological Phantom by Green Theorem
The Image reconstruction is an important problem in optical tomography. The process of the image processing requires the study of photon migration in biological tissue. There are several approaches to study and simulate propagation of photons in biological tissues. These approaches are categorized into stochastic and analytical groups. The Monte Carlo method as a stochastic method is widely use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010