Silencing “Top-Down” Cortical Signals Affects Spike-Responses of Neurons in Cat’s “Intermediate” Visual Cortex
نویسندگان
چکیده
We examined the effects of reversible inactivation of a higher-order, pattern/form-processing, postero-temporal visual (PTV) cortex on the background activities and spike-responses of single neurons in the ipsilateral cytoarchitectonic area 19 (putative area V3) of anesthetized domestic cats. Very occasionally (2/28), silencing recurrent "feedback" signals from PTV, resulted in significant and reversible reduction in background activity of area 19 neurons. By contrast, in large proportions of area 19 neurons, PTV inactivation resulted in: (i) significant reversible changes in the peak magnitude of their responses to visual stimuli (35.5%; 10/28); (ii) substantial reversible changes in direction selectivity indices (DSIs; 43%; 12/28); and (iii) reversible, upward shifts in preferred stimulus velocities (37%; 7/19). Substantial (≥20°) shifts in preferred orientation and/or substantial (≥20°) changes in width of orientation-tuning curves of area 19 neurons were however less common (26.5%; 4/15). In a series of experiments conducted earlier, inactivation of PTV also induced upward shifts in the preferred velocities of the ipsilateral cytoarchitectonic area 17 (V1) neurons responding optimally at low velocities. These upward shifts in preferred velocities of areas 19 and 17 neurons were often accompanied by substantial increases in DSIs. Thus, in both the primary visual cortex and the "intermediate" visual cortex (area 19), feedback from PTV plays a modulatory role in relation to stimulus velocity preferences and/or direction selectivity, that is, the properties which are usually believed to be determined by the inputs from the dorsal thalamus and/or feedforward inputs from the primary visual cortices. The apparent specialization of area 19 for processing information about stationary/slowly moving visual stimuli is at least partially determined, by the feedback from the higher-order pattern-processing visual area. Overall, the recurrent signals from the higher-order, pattern/form-processing visual cortex appear to play an important role in determining the magnitude of spike-responses and some "motion-related" receptive field properties of a substantial proportion of neurons in the intermediate form-processing visual area-area 19.
منابع مشابه
Prefrontal cortex and neural mechanisms of executive function.
Executive function is a product of the coordinated operation of multiple neural systems and an essential prerequisite for a variety of cognitive functions. The prefrontal cortex is known to be a key structure for the performance of executive functions. To accomplish the coordinated operations of multiple neural systems, the prefrontal cortex must monitor the activities in other cortical and sub...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملBottom-Up and Top-Down Input Augment the Variability of Cortical Neurons
Neurons in the cerebral cortex respond inconsistently to a repeated sensory stimulus, yet they underlie our stable sensory experiences. Although the nature of this variability is unknown, its ubiquity has encouraged the general view that each cell produces random spike patterns that noisily represent its response rate. In contrast, here we show that reversibly inactivating distant sources of ei...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملVariable Discharge Pattern and Contrast Invariant Orientation Tuning of a Simple Cell: A Modeling Study
The orientation tuning width of the spike response of neuron in V1 does not change with the contrast of input signals. It is also known that cortical neurons exhibit tremendous irregularity in their discharge pattern, which is conserved over large regions of cerebral cortex. To produce this irregularity in responses the neurons must receive balanced excitation and inhibition. By a modeling stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2017