Combining Generative/Discriminative Learning for Automatic Image Annotation and Retrieval
نویسندگان
چکیده
In order to bridge the semantic gap exists in image retrieval, this paper propose an approach combining generative and discriminative learning to accomplish the task of automatic image annotation and retrieval. We firstly present continuous probabilistic latent semantic analysis (PLSA) to model continuous quantity. Furthermore, we propose a hybrid framework which employs continuous PLSA to model visual features of images in generative learning stage and uses ensembles of classifier chains to classify the multi-label data in discriminative learning stage. Since the framework combines the advantages of generative and discriminative learning, it can predict semantic annotation precisely for unseen images. Finally, we conduct a series of experiments on a standard Corel dataset. The experiment results show that our approach outperforms many state-of-the-art approaches.
منابع مشابه
Fuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملTSVM-HMM: Transductive SVM based hidden Markov model for automatic image annotation
Automatic image annotation (AIA) is an effective technology to improve the performance of image retrieval. In this paper, we propose a novel AIA scheme based on hidden Markov model (HMM). Compared with the previous HMM-based annotation methods, SVM based semi-supervised learning, i.e. transductive SVM (TSVM), is triggered out for remarkably boosting the reliability of HMM with less users’ label...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملAutomatic Image Annotation and Retrieval Using Hybrid Approach
We firstly propose continuous probabilistic latent semantic analysis (PLSA) to model continuous quantity. In addition, corresponding ExpectationMaximization (EM) algorithm is derived to determine the model parameters. Furthermore, we present a hybrid framework which employs continuous PLSA to model visual features of images in generative learning stage and uses ensembles of classifier chains to...
متن کاملAutomatic Text Summarization for Annotating Images
With an explosion of image data on the web, automatic image annotation has become an important area of machine learning, computer vision and natural language processing research. The goal of automatic image annotation systems is to generate the key words or sentences that capture the most important content in the image. There are several ways how to approach this problem. The most typical way i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013