Geometric Registration of High-Genus Surfaces

نویسندگان

  • Lok Ming Lui
  • Chengfeng Wen
چکیده

This paper presents a method to obtain geometric registrations between high-genus (g ≥ 1) surfaces. Surface registration between simple surfaces, such as simply-connected open surfaces, has been well studied. However, very few works have been carried out for the registration of high-genus surfaces. The high-genus topology of the surface poses great challenge for surface registration. A possible approach is to partition surfaces into simply-connected patches and registration is done patch by patch. Consistent cuts are required, which are usually difficult to obtain and prone to error. In this work, we propose an effective way to obtain geometric registration between high-genus surfaces without introducing consistent cuts. The key idea is to conformally parameterize the surface into its universal covering space, which is either the Euclidean plane or the hyperbolic disk embedded in R2. Registration can then be done on the universal covering space by minimizing a shape mismatching energy measuring the geometric dissimilarity between the two surfaces. Our proposed algorithm effectively computes a smooth registration between high-genus surfaces that matches geometric information as much as possible. The algorithm can also be applied to find a smooth and bijective registration minimizing any general energy functionals. Numerical experiments on high-genus surface data show that our proposed method is effective for registering high-genus surfaces with geometric matching. We also applied the method to register anatomical structures for medical imaging, which demonstrates the usefulness of the proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Conformal Mapping for Surface Matching and Registration

Recently, various conformal geometric methods have been presented for non-rigid surface matching and registration. This work proposes to improve the robustness of conformal geometric methods to the boundaries by incorporating the symmetric information of the input surface. We presented two symmetric conformal mapping methods, which are based on solving Riemann-Cauchy equation and curvature flow...

متن کامل

Automated Surface Matching Using Mutual Information Applied to Riemann Surface Structures

Many medical imaging applications require the computation of dense correspondence vector fields that match one surface with another. To avoid the need for a large set of manually-defined landmarks to constrain these surface correspondences, we developed an algorithm to automate the matching of surface features. It extends the mutual information method to automatically match general 3D surfaces ...

متن کامل

Landmark constrained genus-one surface Teichmüller map applied to surface registration in medical imaging

We address the registration problem of genus-one surfaces (such as vertebrae bones) with prescribed landmark constraints. The high-genus topology of the surfaces makes it challenging to obtain a unique and bijective surface mapping that matches landmarks consistently. This work proposes to tackle this registration problem using a special class of quasi-conformal maps called Teichmüller maps (T-...

متن کامل

Centroidal Voronoi tessellation in universal covering space of manifold surfaces

The centroidal Voronoi tessellation (CVT) has found versatile applications in geometric modeling, computer graphics, and visualization, etc. In this paper, we first extend the concept of CVT from Euclidean space to spherical space and hyperbolic space, and then combine all of them into a unified framework – the CVT in universal covering space. The novel spherical and hyperbolic CVT energy funct...

متن کامل

First steps towards radical parametrization of algebraic surfaces

We introduce the notion of radical parametrization of a surface, and we provide algorithms to compute such type of parametrizations for families of surfaces, like: Fermat surfaces, surfaces with a high multiplicity (at least the degree minus 4) singularity, all irreducible surfaces of degree at most 5, all irreducible singular surfaces of degree 6, and surfaces containing a pencil of low-genus ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014