Some Graphs with Small Second Eigenvalue
نویسنده
چکیده
where n = |V |. Let G = (V,E) be a 3-regular hypergraph; i.e. E is a subset of subsets of V of size 3. We consider the space, L2(V ), of real valued functions on V with the usual inner product; let e1, . . . , en be the standard basis for L2(V ), where ei takes the value 1 on the i-th vertex of V and 0 elsewhere. It is natural to construct from G a trilinear form, that is a map from τ , mapping triples of vectors in L2(V ) to R, namely τ n ∑
منابع مشابه
Some Geometric Aspects of Graphs and their Eigenfunctions
We study three mathematical notions, that of nodal regions for eigenfunctions of the Laplacian, that of covering theory, and that of fiber products, in the context of graph theory and spectral theory for graphs. We formulate analogous notions and theorems for graphs and their eigenpairs. These techniques suggest new ways of studying problems related to spectral theory of graphs. We also perform...
متن کاملEla Nested Graphs with Bounded Second Largest ( Signless Laplacian
Nested split and double nested graphs (commonly named nested graphs) are considered. General statements regarding the signless Laplacian spectra are proven, and the nested graphs whose second largest signless Laplacian eigenvalue is bounded by a fixed integral constant are studied. Some sufficient conditions are provided and a procedure for classifying such graphs in particular cases is provide...
متن کاملGraphs with small second largest Laplacian eigenvalue
Let L(G) be the Laplacian matrix of G. In this paper, we characterize all of the connected graphs with second largest Laplacian eigenvalue no more than l; where l . = 3.2470 is the largest root of the equation μ3 − 5μ2 + 6μ − 1 = 0. Moreover, this result is used to characterize all connected graphs with second largest Laplacian eigenvalue no more than three. © 2013 Elsevier Ltd. All rights rese...
متن کاملOn Construction of Almost-Ramanujan Graphs
Reingold et al. introduced the notion zig-zag product on two different graphs, and presented a fully explicit construction of dregular expanders with the second largest eigenvalue O(d−1/3). In the same paper, they ask whether or not the similar technique can be used to construct expanders with the second largest eigenvalue O(d−1/2). Such graphs are called Ramanujan graphs. Recently, zig-zag pro...
متن کاملSpectral Characterization of Graphs with Small Second Largest Laplacian Eigenvalue
The family G of connected graphs with second largest Laplacian eigenvalue at most θ, where θ = 3.2470 is the largest root of the equation μ−5μ+6μ−1 = 0, is characterized by Wu, Yu and Shu [Y.R. Wu, G.L. Yu and J.L. Shu, Graphs with small second largest Laplacian eigenvalue, European J. Combin. 36 (2014) 190–197]. Let G(a, b, c, d) be a graph with order n = 2a + b + 2c + 3d + 1 that consists of ...
متن کاملThe Second Eigenvalue and Random Walks in Random Regular Graphs with Increasing Girth
The goal of this thesis is to upper bound the expected value of the second largest eigenvalue in magnitude of random regular graphs with a given minimum girth. Having a small upper bound implies such random graphs are likely to be expanders and thus have several combinatorial properties useful in various fields of computer science. The best possible upper bound asymptotically on the second eige...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Combinatorica
دوره 15 شماره
صفحات -
تاریخ انتشار 1995