Taking a New Look at the Latent Semantic Analysis Approach to Information Retrieval
نویسندگان
چکیده
منابع مشابه
Query expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملA Novel Multi-modal Integration and Propagation Model for Cross-Media Information Retrieval
In this paper, we present a novel Probabilistic Latent Semantic Analysis-based (PLSA-based) aspect model and turn cross-media retrieval into two parts of multi-modal integration and correlation propagation. We first use multivariate Gaussian distributions to model continuous quantity in PLSA, avoiding information loss between feature-instance versus real-world matching. Multi-modal correlations...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملLatent Semantic Indexing Based on Factor Analysis
The main purpose of this paper is to propose a novel latent semantic indexing (LSI), statistical approach to simultaneously mapping documents and terms into a latent semantic space. This approach can index documents more effectively than the vector space model (VSM). Latent semantic indexing (LSI), which is based on singular value decomposition (SVD), and probabilistic latent semantic indexing ...
متن کاملProbabilistic Latent Semantic Analysis
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two{mode and co-occurrence data, which has applications in information retrieval and ltering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of co-occu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001