Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization

نویسندگان

  • Marina Andretta
  • Ernesto G. Birgin
  • José Mario Mart́ınez
چکیده

A practical active-set method for bound-constrained minimization is introduced. Within the current face the classical Euclidian trust-region method is employed. Spectral projected gradient directions are used to abandon faces. Numerical results are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent Infeasible Interior-Point Trust-Region Methods for Constrained Minimization

We study an infeasible interior-point trust-region method for constrained minimization. This method uses a logarithmic-barrier function for the slack variables and updates the slack variables using second-order correction. We show that if a certain set containing the iterates is bounded and the origin is not in the convex hull of the nearly active constraint gradients everywhere on this set, th...

متن کامل

Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients

A new active-set method for smooth box-constrained minimization is introduced. The algorithm combines an unconstrained method, including a new line-search which aims to add many constraints to the working set at a single iteration, with a recently introduced technique (spectral projected gradient) for dropping constraints from the working set. Global convergence is proved. A computer implementa...

متن کامل

A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients

A practical algorithm for box-constrained optimization is introduced. The algorithm combines an active-set strategy with spectral projected gradient iterations. In the interior of each face a strategy that deals efficiently with negative curvature is employed. Global convergence results are given. Numerical results are presented.

متن کامل

A Limited-Memory Multipoint Symmetric Secant Method for Bound Constrained Optimization

A new algorithm for solving smooth large-scale minimization problems with bound constraints is introduced. The way of dealing with active constraints is similar to the one used in some recently introduced quadratic solvers. A limited-memory multipoint symmetric secant method for approximating the Hessian is presented. Positive-definiteness of the Hessian approximation is not enforced. A combina...

متن کامل

A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems

BOUND-CONSTRAINED MINIMIZATION PROBLEMS MARY ANN BRANCH , THOMAS F. COLEMAN AND YUYING LI Abstract. A subspace adaptation of the Coleman-Li trust region and interior method is proposed for solving large-scale bound-constrained minimization problems. This method can be implemented with either sparse Cholesky factorization or conjugate gradient computation. Under reasonable conditions the converg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005