A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes)
نویسندگان
چکیده
We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to 1630 nm), which can potentially enable Pbit/s total transmission capacity and hundreds bit/s/Hz spectral efficiency in a single TA-MOMRF. Moreover, the effective refractive index difference of even and odd fiber eigenmodes induced by the ellipticity of ring and fiber bending and their impacts on the purity of OAM mode and mode coupling/crosstalk are analyzed. It is found that high-order OAM modes show preferable tolerance to the ring ellipticity and fiber bending. The designed fiber offers favorable tolerance to both small ellipticity of ring (<-22 dB crosstalk under an ellipticity of 0.5%) and small bend radius (<-20 dB crosstalk under a bend radius of 2 cm).
منابع مشابه
The Orbital Angular Momentum Modes Supporting Fibers Based on the Photonic Crystal Fiber Structure
The orbital angular momentum (OAM) of light can be another physical dimension that we exploit to make multiplexing in the spatial domain. The design of the OAM mode supporting fiber attracts many attentions in the field of the space division multiplexing (SDM) system. This paper reviews the recent progresses in photonic crystal fiber (PCF) supporting OAM modes, and summarizes why a PCF structur...
متن کاملEfficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs.
We propose an approach to efficiently generate and multiplex optical orbital angular momentum (OAM) modes in a fiber with a ring refractive index profile by using multiple coherent inputs from a Gaussian mode. By controlling the phase relationship of the multiple inputs, one can selectively generate OAM modes of different states l. By controlling both the amplitude and phase of the multiple inp...
متن کاملCapacity limits of spatially multiplexed free-space communication
Increasing the information capacity per unit bandwidth has been a perennial goal of scientists and engineers1. Multiplexing of independent degrees of freedom, such as wavelength, polarization and more recently space, has been a preferred method to increase capacity2,3 in both radiofrequency and optical communication. Orbital angular momentum, a physical property of electromagnetic waves discove...
متن کاملUltrahigh Capacity Optical Communications beyond Pb/s
Recent progress in ultrahigh capacity optical communication technologies based on space-division multiplexing is described including one Pb/s transmission in a newly developed multi-core fiber with future perspectives for more capacity. OCIS codes: (060.2330) Fiber optics communications; (060.2360) Fiber optics links and subsystems
متن کاملMillimetre Wave with Rotational Orbital Angular Momentum
Orbital angular momentum (OAM) has been widely studied in fibre and short-range communications. The implementation of millimetre waves with OAM is expected to increase the communication capacity. Most experiments demonstrate the distinction of OAM modes by receiving all of the energy in the surface vertical to the radiation axis in space. However, the reception of OAM is difficult in free space...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014