Quantum effects in the plasmon response of bimetallic core-shell nanostructures.

نویسندگان

  • Dana-Codruta Marinica
  • Javier Aizpurua
  • Andrei G Borisov
چکیده

We report a quantum mechanical study of the plasmonic response of bimetallic spherical core/shell nanoparticles. The systems comprise up to 104 electrons and their optical response is addressed with Time Dependent Density Functional Theory calculations. These quantum results are compared with classical electromagnetic calculations for core/shell systems formed by Al/Na, Al/Au and Ag/Na, as representative examples of bimetallic systems. We show that for shell widths in the nanometer range, the system cannot be described as a simple stack of two metals. The finite size effect and the transition layer formed between the core and the shell strongly modify the optical properties of the compound nanoparticle. In particular this configuration leads to a frequency shift of the plasmon resonance with shell character and an increased plasmon decay into electron-hole pairs which eventually quenches this resonance for very thin shells. This effect is difficult to capture with a classical theory even upon adjustment of the parameters of a combination of metallic dielectric functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of temperature on optical absorption cross section of bimetallic core-shell nano particles

In this paper, the temperature dependence on optical absorption cross section of the core shell bimetallic nanoparticles (NPs) is investigated in quasi static approximation. Temperature dependence of the plasmon resonance is important issue because of recent applications of NPs of noble metal for heat treating of cancer and the computer chips. The effect of temperature on surface plasmon resona...

متن کامل

Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures

Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanopartic...

متن کامل

Bimetallic Janus nanostructures via programmed shell growth.

We report the synthesis of compositionally asymmetric, core-Janus shell plasmonic nanostructures comprised of Au and Ag. Kinetic control was employed to achieve asymmetric shell growth on Au nanoparticles acting as cores. Subsequent differential surface functionalization of these nanostructures enabled programmed shell growth resulting in core-Janus shell nanostructures. UV/vis extinction spect...

متن کامل

Ultrafast Excited-State Dynamics in Shape- and Composition- Controlled Gold−Silver Bimetallic Nanostructures

In this work, we have examined the ultrafast dynamics of shapeand composition-controlled bimetallic Au/ Ag core/shell nanostructures with transient absorption spectroscopy (TAS) as a function of Ag layer thickness (0−15 nm) and pump excitation fluence (50−500 nJ/pulse). Our synthesis approach generated both bimetallic nanocubes and nanopyramids with distinct dipolar plasmon resonances and plasm...

متن کامل

Bimetallic core/shell nanoparticle-decorated 3D urchin-like hierarchical TiO2 nanostructures with magneto-responsive and decolorization characteristics

The semiconductors decorated with noble metals or magnetic metals have attracted increasing attention due to multifunctional properties. In this article, we prepare novel bimetallic core/shell nanoparticle (Co@Au and Co@Ag)-decorated 3D urchin-like hierarchical TiO2 nanostructures through combining electroless plating and in situ replacement processes. The morphology and structure are character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 24 21  شماره 

صفحات  -

تاریخ انتشار 2016