Sample Subset Optimization for Classifying Imbalanced Biological Data

نویسندگان

  • Pengyi Yang
  • Zili Zhang
  • Bing Bing Zhou
  • Albert Y. Zomaya
چکیده

Data in many biological problems are often compounded by imbalanced class distribution. That is, the positive examples may largely outnumbered by the negative examples. Many classification algorithms such as support vector machine (SVM) are sensitive to data with imbalanced class distribution, and result in a suboptimal classification. It is desirable to compensate the imbalance effect in model training for more accurate classification. In this study, we propose a sample subset optimization technique for classifying biological data with moderate and extremely high imbalanced class distributions. By using this optimization technique with an ensemble of SVMs, we build multiple roughly balanced SVM base classifiers, each trained on an optimized sample subset. The experimental results demonstrate that the ensemble of SVMs created by our sample subset optimization technique can achieve higher area under the ROC curve (AUC) value than popular sampling approaches such as random over-/under-sampling; SMOTE sampling, and those in widely used ensemble approaches such as bagging and boosting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering

 Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...

متن کامل

Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance

This study investigates the effect of class imbalance in training data when developing neural network classifiers for computer-aided medical diagnosis. The investigation is performed in the presence of other characteristics that are typical among medical data, namely small training sample size, large number of features, and correlations between features. Two methods of neural network training a...

متن کامل

Support Vector Machine Classification of Uncertain and Imbalanced data using Robust Optimization

In this paper, we have developed a robust Support Vector Machines (SVM) scheme of classifying imbalanced and noisy data using the principles of Robust Optimization. Uncertainty is prevalent in almost all datasets and has not been addressed efficiently by most data mining techniques, as these are based on deterministic mathematical tools. Imbalanced datasets exist while performing analysis of ra...

متن کامل

Classifying imbalanced data sets using similarity based hierarchical decomposition

Classification of data is difficult if the data is imbalanced and classes are overlapping. In recent years, more research has started to focus on classification of imbalanced data since real world data is often skewed. Traditional methods are more successful with classifying the class that has the most samples (majority class) compared to the other classes (minority classes). For the classifica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011