Characterization of Streptococcus pneumoniae thymidylate kinase: steady-state kinetics of the forward reaction and isothermal titration calorimetry.
نویسندگان
چکیده
Thymidylate kinase (TMK) catalyses the phosphorylation of dTMP to form dTDP in both the de novo and salvage pathways of dTTP synthesis. The tmk gene from the bacterial pathogen Streptococcus pneumoniae was identified. The gene, encoding a 212-amino-acid polypeptide (23352 Da), was cloned and overexpressed in Escherichia coli with an N-terminal hexahistidine tag. The enzyme was purified to homogeneity, and characterized in the forward reaction. The pH profile of TMK indicates that its activity is optimal at pH 8.5. The substrate specificity of the enzyme was examined; it was found that not only ATP, but also dATP and to a lesser extent CTP, could act as phosphate donors, and dTMP and dUMP could serve as phosphate acceptors. Furthermore, AZT-MP (3'-azido-3'-deoxythymidine 5'-monophosphate) was shown not to be a substrate for S. pneumoniae TMK. Steady-state kinetics and inhibition studies with adenosine 5'-[beta-thio]diphosphate and dTDP in addition to isothermal titration calorimetry were performed. The data showed that binding follows an ordered pathway, in which ATP binds first with a K(m) of 235 +/- 46 microM and a K(d) of 116 +/- 3 microM, and dTMP binds secondly with a K(m) of 66 +/- 12 microM and a K(d) of 53 +/- 2 microM.
منابع مشابه
Biological Applications of Isothermal Titration Calorimetry
Most of the biological phenomena are influenced by intermolecular recognition and interaction. Thus, understanding the thermodynamics of biomacromolecule ligand interaction is a very interesting area in biochemistry and biotechnology. One of the most powerful techniques to obtain precise information about the energetics of (bio) molecules binding to other biological macromolecules is isoth...
متن کاملAdvantages of isothermal titration calorimetry for xylanase kinetics in comparison to chemical-reducing-end assays.
In lignocellulosic raw materials for biomass conversion, hemicelluloses constitute a substantial fraction, with xylan being the primary part. Although many pretreatments reduce the amount or change the distribution of xylan, it is important to degrade residual xylan so as to improve the overall yield. Typically, xylanase reaction rates are measured in stopped assays by chemical quantification o...
متن کاملKinetics of Fe2O3-Al reaction prior to mechanochemical synthesis of Fe3Al-Al2O3 nanocomposite powder using thermal analysis
The effect of ball milling on kinetics of the thermite reaction of 3Fe2O3 + 8Al powder mixture to synthesizeFe3Al-Al2O3 nanocomposite was investigated using differential thermal analysis. A model-free methodwas applied to the non-isothermal differential calorimetry (DSC) data to evaluate the reaction kineticsaccording to the Starink method. The activation energy of the thermit...
متن کاملMetal ions binding study on human growth hormone by isothermal titration calorimetric method
The interaction of hGH with some metal ions ( ) at 27°C in NaC1 solution, 50 mM was studied using Isothermal titration calorimetry. There is a set of three identical and non-interacting binding sites for binding of all these metal ions, expect . The intrinsic association equilibrium constants () are not very different for and , and also their molar enthalpies of binding (KJ/mol for and KJ/mo...
متن کاملIsothermal Titration Calorimetry and Molecular Dynamics Simulation Studies on the Binding of Indometacin with Human Serum Albumin
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Drug binding to HSA is crucial to study the absorption, distribution, metabolism, efficiency and bioavailability of drug molecules. In this study, isothermal titration calorimetry and molecular dynamics simulation of HSA and its complex with indometacin (IM) were performed to investigate thermodynamics parameters and th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 363 Pt 3 شماره
صفحات -
تاریخ انتشار 2002