Selective elimination of I(K,slow1) in mouse ventricular myocytes expressing a dominant negative Kv1.5alpha subunit.

نویسندگان

  • Huilin Li
  • Weinong Guo
  • Kathryn A Yamada
  • Jeanne M Nerbonne
چکیده

Although previous studies have revealed a role for the voltage-gated K+ channel alpha-subunit Kv1.5 (KCNA5) in the generation of the 4-aminopyridine (4-AP)-sensitive component of delayed rectification in mouse ventricles (IK,slow1), the phenotypic consequences of manipulating IK,slow1 expression in vivo in different (mouse) models are distinct. In these experiments, point mutations were introduced in the pore region of Kv1.5 to change the tryptophan (W) at position 461 to phenylalanine (F) to produce a nonconducting subunit, Kv1.5W461F, that is shown to function as a Kv1 subfamily-specific dominant negative (Kv1.5DN). With the use of the alpha-myosin heavy chain promoter to direct cardiac-specific expression, three lines of Kv1.5DN-expressing (C57BL6) transgenic mice were generated and characterized. Electrophysiological recordings from Kv1.5-DN-expressing left ventricular myocytes revealed that the micromolar 4-AP sensitive IK,slow1 is selectively eliminated. The attenuation of IK,slow1 is accompanied by increased ventricular action potential durations and marked QT prolongation. In contrast to previous findings in mice expressing a truncated (DN) Kv1.1 transgene; however, no electrical remodeling is evident in Kv1.5DN-expressing ventricular myocytes, and the (Kv1.5DN-induced) elimination of IK,slow1 does not result in spontaneous ventricular arrhythmias.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early Afterdepolarizations, Atrioventricular Block, and Ventricular Arrhythmias in Mice Lacking Kv1.4 and Expressing a Dominant-Negative Kv4 a Subunit

It was recently reported that the slow transient outward K current, Ito, s, that is evident in mouse left ventricular septal cells is eliminated in mice with a targeted deletion of the Kv1.4 gene (Kv1.4). The rapidly inactivating transient outward K current, Ito, f, in contrast, is selectively eliminated in ventricular myocytes isolated from transgenic mice expressing a dominant-negative Kv4 a ...

متن کامل

Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant-negative Kv2 alpha subunit.

An in vivo experimental strategy, involving cardiac-specific expression of a mutant Kv 2.1 subunit that functions as a dominant negative, was exploited in studies focused on exploring the role of members of the Kv2 subfamily of pore-forming (alpha) subunits in the generation of functional voltage-gated K(+) channels in the mammalian heart. A mutant Kv2.1 alpha subunit (Kv2.1N216) was designed t...

متن کامل

Attenuation of I(K,slow1) and I(K,slow2) in Kv1/Kv2DN mice prolongs APD and QT intervals but does not suppress spontaneous or inducible arrhythmias.

Overexpression of a truncated Kv1.1 or Kv2.1 channel polypeptide in the heart (Kv1DN or Kv2DN) resulted in mice with a prolonged action potential duration (APD) due to marked attenuation of rapidly activating, slowly inactivating K+ current (I(K,slow1)) or slowly inactivating outward K(+) current (I(K,slow2)) in ventricular myocytes. ECG monitoring, optical mapping, and programmed electrical st...

متن کامل

Characterization of a novel, dominant negative KCNJ2 mutation associated with Andersen-Tawil syndrome.

Andersen-Tawil syndrome is characterized by periodic paralysis, ventricular ectopy, and dysmorphic features. Approximately 60% of patients exhibit loss-of-function mutations in KCNJ2, which encodes the inwardly rectifying K(+) channel pore forming subunit Kir2.1. Here, we report the identification of a novel KCNJ2 mutation (G211T), resulting in the amino acid substitution D71Y, in a patient pre...

متن کامل

Targeted expression of a dominant-negative K(v)4.2 K(+) channel subunit in the mouse heart.

Action potential duration is prolonged in many forms of heart disease, often as a result of reductions in Ca(2+)-independent transient outward K(+) currents (ie, I(to)). To examine the effects of a primary reduction in I(to) current in the heart, transgenic mice were generated that express a dominant-negative N-terminal fragment of the K(v)4.2 pore-forming potassium channel subunit under the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 286 1  شماره 

صفحات  -

تاریخ انتشار 2004